skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Virtual Ability Simulation: Applying Rotational Gain to the Leg to Increase Confidence During Physical Rehabilitation
This paper investigates a concept called Virtual Ability Simulation (VAS) for people with disability due to Multiple Sclerosis (MS), in a virtual reality (VR) environment. In a VAS people with a disability perform tasks that are made easier in the virtual environment (VE) compared to the real world. We hypothesized that putting people with disabilities in a VAS will increase confidence and enable more efficient task completion. To investigate this hypothesis, we conducted a within-subjects experiment in which participants performed a virtual task called ''kick the ball'' in two different conditions: a no gain condition (i.e., same difficulty as in the real world) and a rotational gain condition (i.e., physically easier than the real world but visually the same). The results from our study suggest that VAS increased participants' confidence which in turn enables them to perceive the difficulty of the same task easier.  more » « less
Award ID(s):
1648949 1350995
PAR ID:
10122177
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ICAT-EGVE 2019 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments
ISSN:
1727-530X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fully immersive virtual reality, with the unique ability to replicate the real world, could potentially aid in real-time communication. Geographically separated teams can collaborate using virtual reality. To test the viability of using virtual reality for remote collaboration, we designed a system called “WeRSort” where teams sorted cards in a virtual environment. Participants performed the task as a team of 2 in one of three conditions-controls-only condition, generic embodiment and full embodiment. Objective measures of performance, time and percentage match with master cards showed no significant difference. Subjective measures of presence and system usability also showed no statistical significance. However, overall work-load obtained from NASA-TLX showed that fully immersive virtual reality resulted in lower workload in comparison with the other two. Qualitative data was collected and analyzed to understand collaboration using the awareness evaluation model. 
    more » « less
  2. This research investigates the effect of scaling in virtual reality to improve the reach of users with Parkinson’s disease (PD). People with PD have limited reach, often due to impaired postural stability. We investigated how virtual reality (VR) can improve reach during and after VR exposure. Participants played a VR game where they smashed water balloons thrown at them by crossing their midsection. The distance the balloons were thrown at increased and decreased based on success or failure. Their perception of the distance and their hand were scaled in three counterbalanced conditions: under-scaled (scale = 0:83), not-scaled (scale = 1), and over-scaled (scale = 1:2), where the scale value is the ratio between the virtual reach that they perceive in the virtual environment (VE) and their actual reach. In each study condition, six data were measured - 1. Real World Reach (pre-exposure), 2. Virtual Reality Baseline Reach, 3. Virtual Reality Not-Scaled Reach, 4. Under-Scaled Reach, 5. Over-Scaled Reach, and 6. Real World Reach (post-exposure). Our results show that scaling a person’s movement in virtual reality can help improve reach. Therefore, we recommend including a scaling factor in VR games for people with Parkinson’s disease. 
    more » « less
  3. Best Paper Award. When estimating the distance or size of an object in the real world, we often use our own body as a metric; this strategy is called body-based scaling. However, object size estimation in a virtual environment presented via a head-mounted display differs from the physical world due to technical limitations such as narrow field of view and low fidelity of the virtual body when compared to one's real body. In this paper, we focus on increasing the fidelity of a participant's body representation in virtual environments with a personalized hand using personalized characteristics and a visually faithful augmented virtuality approach. To investigate the impact of the personalized hand, we compared it against a generic virtual hand and measured effects on virtual body ownership, spatial presence, and object size estimation. Specifically, we asked participants to perform a perceptual matching task that was based on scaling a virtual box on a table in front of them. Our results show that the personalized hand not only increased virtual body ownership and spatial presence, but also supported participants in correctly estimating the size of a virtual object in the proximity of their hand. 
    more » « less
  4. In Human–Robot Interaction, researchers typically utilize in-person studies to collect subjective perceptions of a robot. In addition, videos of interactions and interactive simulations (where participants control an avatar that interacts with a robot in a virtual world) have been used to quickly collect human feedback at scale. How would human perceptions of robots compare between these methodologies? To investigate this question, we conducted a 2x2 between-subjects study (N=160), which evaluated the effect of the interaction environment (Real vs. Simulated environment) and participants’ interactivity during human-robot encounters (Interactive participation vs. Video observations) on perceptions about a robot (competence, discomfort, social presentation, and social information processing) for the task of navigating in concert with people. We also studied participants’ workload across the experimental conditions. Our results revealed a significant difference in the perceptions of the robot between the real environment and the simulated environment. Furthermore, our results showed differences in human perceptions when people watched a video of an encounter versus taking part in the encounter. Finally, we found that simulated interactions and videos of the simulated encounter resulted in a higher workload than real-world encounters and videos thereof. Our results suggest that findings from video and simulation methodologies may not always translate to real-world human–robot interactions. In order to allow practitioners to leverage learnings from this study and future researchers to expand our knowledge in this area, we provide guidelines for weighing the tradeoffs between different methodologies. 
    more » « less
  5. In a social context where two or more interlocutors interact with each other in the same space, one’s sense of copresence with the others is an important factor for the quality of communication and engagement in the interaction. Although augmented reality (AR) technology enables the superposition of virtual humans (VHs) as interlocutors in the real world, the resulting sense of copresence is usually far lower than with a real human interlocutor. In this paper, we describe a human-subject study in which we explored and investigated the effects that subtle multi-modal interaction between the virtual environment and the real world, where a VH and human participants were co-located, can have on copresence. We compared two levels of gradually increased multi-modal interaction: (i) virtual objects being affected by real airflow as commonly experienced with fans in summer, and (ii) a VH showing awareness of this airflow. We chose airflow as one example of an environmental factor that can noticeably affect both the real and virtual worlds, and also cause subtle responses in interlocutors.We hypothesized that our two levels of treatment would increase the sense of being together with the VH gradually, i.e., participants would report higher copresence with airflow influence than without it, and the copresence would be even higher when the VH shows awareness of the airflow. The statistical analysis with the participant-reported copresence scores showed that there was an improvement of the perceived copresence with the VH when both the physical–virtual interactivity via airflow and the VH’s awareness behaviors were present together. As the considered environmental factors are directed at the VH, i.e., they are not part of the direct interaction with the real human, they can provide a reasonably generalizable approach to support copresence in AR beyond the particular use case in the present experiment. 
    more » « less