skip to main content

Search for: All records

Award ID contains: 1350995

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our objective in this research is to compare the usability of three distinct head gaze-based selection methods in an Augmented Reality (AR) hidden object game for children: voice recognition, gesture, and physical button (clicker). Prior work on AR applications in STEM education has focused on how it compares with non-AR methods rather than how children respond to different interaction modalities. We investigated the differences between voice, gesture, and clicker based interaction methods based on the metrics of input errors produced and elapsed time to complete the tutorial and game. We found significant differences in input errors between the voice and gesture conditions, and in elapsed tutorial time between the voice and clicker conditions. We hope to apply the results of our study to improve the interface for AR educational games aimed at children, which could pave the way for greater adoption of AR games in schools.
  2. The objective of this research was to evaluate and compare perceived fatigue and usability of 3D user interfaces in and out of the water. Virtual Reality (VR) in the water has several potential applications, such as aquatic physical rehabilitation, where patients are typically standing waist or shoulder deep in a pool and performing exercises in the water. However, there have been few works that developed waterproof VR/AR systems and none of them have assessed fatigue, which has previously been shown to be a drawback in many 3D User Interfaces above water. This research presents a novel prototype system for developing waterproof VR experiences and investigates the effect of submersion in water on fatigue as compared to above water. Using a classic selection and docking task, results suggest that being underwater had no significant effect on performance, but did reduce perceived fatigue, which is important for aquatic rehabilitation. Previous 3D interaction methods that were once thought to be too fatiguing might still be viable in water.
  3. The objective of this research is to compare the effectiveness of various virtual reality tracking systems underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices' rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is approximately as accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored as a possibility for underwater VR applications.
  4. This paper investigates a concept called Virtual Ability Simulation (VAS) for people with disability due to Multiple Sclerosis (MS), in a virtual reality (VR) environment. In a VAS people with a disability perform tasks that are made easier in the virtual environment (VE) compared to the real world. We hypothesized that putting people with disabilities in a VAS will increase confidence and enable more efficient task completion. To investigate this hypothesis, we conducted a within-subjects experiment in which participants performed a virtual task called ''kick the ball'' in two different conditions: a no gain condition (i.e., same difficulty as in the real world) and a rotational gain condition (i.e., physically easier than the real world but visually the same). The results from our study suggest that VAS increased participants' confidence which in turn enables them to perceive the difficulty of the same task easier.