skip to main content

Title: Control of a High Performance Bipedal Robot using Viscoelastic Liquid Cooled Actuators
This paper describes the control, and evaluation of a new human-scaled biped robot with liquid cooled viscoelastic actuators (VLCA). Based on the lessons learned from previous work from our team on VLCA, we present a new system design embodying a Reaction Force Sensing Series Elastic Actuator and a Force Sensing Series Elastic Actuator. These designs are aimed at reducing the size and weight of the robot’s actuation system while inheriting the advantages of our designs such as energy efficiency, torque density, impact resistance and position/force controllability. The robot design takes into consideration human-inspired kinematics and range-of-motion, while relying on foot placement to balance. In terms of actuator control, we perform a stability analysis on a Disturbance Observer designed for force control. We then evaluate various position control algorithms both in the time and frequency domains for our VLCA actuators. Having the low level baseline established, we first perform a controller evaluation on the legs using Operational Space Control. Finally, we move on to evaluating the full bipedal robot by accomplishing unsupported dynamic walking.
Authors:
Award ID(s):
1724360
Publication Date:
NSF-PAR ID:
10122272
Journal Name:
IEEE International Conference on Humanoid Robots
Sponsoring Org:
National Science Foundation
More Like this
  1. Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant withmore »respect to the viscous losses, our optimal PEA designs outperform SEA designs by further reducing the motor energy consumption up to 63%. Comparing to the linear PEA designs, our nonlinear PEA designs further reduced the motor energy consumption up to 31%. From our convex formulation, our global optimal nonlinear parallel elastic actuator designs give two different elongation-torque curves for positive and negative elongation, suggesting a clutching mechanism for the final implementation. In addition, the different torque-elongation profiles for positive and negative elongation for nonlinear parallel elastic actuators can cause sensitivity of the energy consumption to changes in the nominal load trajectory.« less
  2. High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of “design for control“, namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons.
  3. Abstract Series elastic actuators (SEAs) are increasingly popular in wearable robotics due to their high fidelity closed-loop torque control capability. Therefore, it has become increasingly important to characterize its performance when used in dynamic environments. However, the conventional design approach does not fully capture the complexity of the entire exoskeleton system. These limitations stem from identifying design criteria with inadequate biomechanics data, utilizing an off-the-shelf user interface, and applying a benchtop-based proportional-integral-derivative control for actual low-level torque tracking. While this approach shows decent actuator performance, it does not consider human factors such as the dynamic back-driving nature of human-exoskeleton systems as well as soft human tissue dampening during the load transfer. Using holistic design guidelines to improve the SEA-based exoskeleton performance during dynamic locomotion, our final system has an overall mass of 4.8 kg (SEA mass of 1.1 kg) and can provide a peak joint torque of 108 Nm with a maximum velocity of 5.2 rad/s. Additionally, we present a user state-based feedforward controller to further improve the low-level torque tracking for diverse walking conditions. Our study results provide future exoskeleton designers with a foundation to further improve SEA-based exoskeleton’s torque tracking response for maximizing human-exoskeleton performance during dynamic locomotion.
  4. Cooperative robots or “cobots” promise to allow humans and robots to work together more closely while maintaining safety. However, to date the capabilities of cobots are greatly diminished compared to industrial robots in terms of the force and power they are able to safely produce. This is in part due to the actuation choices of cobots. Low impedance robotic actuators aim to solve this problem by attempting to provide an actuator with a combination of low output impedance and a large bandwidth of force control. In short the ideal actuator has a large dynamic range. Existing actuators success and performance has been limited. We propose a high force and high power balanced hybrid active-passive actuator which aims to increase the actuation capability of low impedance actuators and to safely enable high performance larger force and workspace robots. Our balanced hybrid actuator does so, by combining and controlling a series elastic actuator, a small DC motor, and a particle brake in parallel. The actuator provides low and high frequency power producing active torques, along with power absorbing passive torques. Control challenges and advantages of hybrid actuators are discussed and overcome through the use of trajectory optimization, and the safety of themore »new actuator is evaluated.« less
  5. The need to create more viable soft sensors is increasing in tandem with the growing interest in soft robots. Several sensing methods, like capacitive stretch sensing and intrinsic capacitive self-sensing, have proven to be useful when controlling soft electro-hydraulic actuators, but are still problematic. This is due to challenges around high-voltage electronic interference or the inability to accurately sense the actuator at higher actuation frequencies. These issues are compounded when trying to sense and control the movement of a multiactuator system. To address these shortcomings, we describe a two-part magnetic sensing mechanism to measure the changes in displacement of an electro-hydraulic (HASEL) actuator. Our magnetic sensing mechanism can achieve high accuracy and precision for the HASEL actuator displacement range, and accurately tracks motion at actuation frequencies up to 30 Hz, while being robust to changes in ambient temperature and relative humidity. The high accuracy of the magnetic sensing mechanism is also further emphasized in the gripper demonstration. Using this sensing mechanism, we can detect submillimeter difference in the diameters of three tomatoes. Finally, we successfully perform closed-loop control of one folded HASEL actuator using the sensor, which is then scaled into a deformable tilting platform of six units (one HASELmore »actuator and one sensor) that control a desired end effector position in 3D space. This work demonstrates the first instance of sensing electro-hydraulic deformation using a magnetic sensing mechanism. The ability to more accurately and precisely sense and control HASEL actuators and similar soft actuators is necessary to improve the abilities of soft, robotic platforms.« less