skip to main content

Title: Convex Optimization for Spring Design of Parallel Elastic Actuators
Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant with respect to the viscous more » losses, our optimal PEA designs outperform SEA designs by further reducing the motor energy consumption up to 63%. Comparing to the linear PEA designs, our nonlinear PEA designs further reduced the motor energy consumption up to 31%. From our convex formulation, our global optimal nonlinear parallel elastic actuator designs give two different elongation-torque curves for positive and negative elongation, suggesting a clutching mechanism for the final implementation. In addition, the different torque-elongation profiles for positive and negative elongation for nonlinear parallel elastic actuators can cause sensitivity of the energy consumption to changes in the nominal load trajectory. « less
Authors:
; ;
Award ID(s):
1830360 1953908
Publication Date:
NSF-PAR ID:
10318760
Journal Name:
Proceedings of the American Control Conference
ISSN:
0743-1619
Sponsoring Org:
National Science Foundation
More Like this
  1. Compared to rigid actuators, Series Elastic Actuators (SEAs) offer a potential reduction of motor energy consumption and peak power, though these benefits are highly dependent on the design of the torque-elongation profile of the elastic element. In the case of linear springs, natural dynamics is a traditional method for this design, but it has two major limitations: arbitrary load trajectories are difficult or impossible to analyze and it does not consider actuator constraints. Parametric optimization is also a popular design method that addresses these limitations, but solutions are only optimal within the space of the parameters. To overcome these limitations, we propose a non-parametric convex optimization program for the design of the nonlinear elastic element that minimizes energy consumption and peak power for an arbitrary periodic reference trajectory. To obtain convexity, we introduce a convex approximation to the expression of peak power; energy consumption is shown to be convex without approximation. The combination of peak power and energy consumption in the cost function leads to a multiobjective convex optimization framework that comprises the main contribution of this paper. As a case study, we recover the elongation-torque profile of a cubic spring, given its natural oscillation as the reference load. Wemore »then design nonlinear SEAs for an ankle prosthesis that minimize energy consumption and peak power for different trajectories and extend the range of achievable tasks when subject to actuator constraints.« less
  2. Design of rehabilitation and physical assistance robots that work safely and efficiently despite uncertain operational conditions remains an important challenge. Current methods for the design of energy efficient series elastic actuators use an optimization formulation that typically assumes known operational requirements. This approach could lead to actuators that cannot satisfy elongation, speed, or torque requirements when the operation deviates from nominal conditions. Addressing this gap, we propose a convex optimization formulation to design the stiffness of series elastic actuators to minimize energy consumption and satisfy actuator constraints despite uncertainty due to manufacturing of the spring, unmodeled dynamics, efficiency of the transmission, and the kinematics and kinetics of the load. To achieve convexity, we write energy consumption as a scalar convex-quadratic function of compliance. As actuator constraints, we consider peak motor torque, peak motor velocity, limitations due to the speed-torque relationship of DC motors, and peak elongation of the spring. We apply our formulation to the robust design of a series elastic actuator for a powered prosthetic ankle. Our simulation results indicate that a small trade-off between energy efficiency and robustness is justified to design actuators that can operate with uncertainty.
  3. Natural dynamics, nonlinear optimization, and, more recently, convex optimization are available methods for stiffness design of energy-efficient series elastic actuators. Natural dynamics and general nonlinear optimization only work for a limited set of load kinetics and kinematics, cannot guarantee convergence to a global optimum, or depend on initial conditions to the numerical solver. Convex programs alleviate these limitations and allow a global solution in polynomial time, which is useful when the space of optimization variables grows (e.g., when designing optimal nonlinear springs or co-designing spring, controller, and reference trajectories). Our previous work introduced the stiffness design of series elastic actuators via convex optimization when the transmission dynamics are negligible, which is an assumption that applies mostly in theory or when the actuator uses a direct or quasi-direct drive. In this work, we extend our analysis to include friction at the transmission. Coulomb friction at the transmission results in a non-convex expression for the energy dissipated as heat, but we illustrate a convex approximation for stiffness design. We experimentally validated our framework using a series elastic actuator with specifications similar to the knee joint of the Open Source Leg, an open-source robotic knee-ankle prosthesis.
  4. Nonlinear systems leveraging the effects of negative stiffness can exhibit beneficial qualities for passive seismic mitigation in structures. Such systems can be achieved by placing nonlinear devices displaying negative stiffness in parallel with linear positive stiffness systems such as a structure or spring. This thesis presents research into two such systems: (i) a device which causes apparent weakening in a structure subjected to horizontal ground motions and (ii) an isolation system to protect building contents from vertical seismic effects. Apparent weakening is the softening of a structure’s apparent stiffness by adding negative stiffness to the overall system via negative stiffness devices. Apparent weakening is an elastic effect that has the benefit of reducing the peak accelerations and base shears induced in a structure due to a seismic event without reducing the main structural strength. The smooth negative stiffness device (SNSD) presented in this thesis consists of cables, pulleys, and extension springs. A nonlinear mathematical model of the load-deflection behavior of the SNSD was developed and used to determine the optimal geometry for such a device. A prototype device was designed and fabricated for installation in a bench-scale experimental structure, which was characterized through static and dynamic tests. A numerical studymore »was also conducted on two other SNSD configurations designed to achieve different load-deflection relations for use in an inelastic model building subject to a suite of historic and synthetic ground motions. In both the experimental prototype and the numerical study, the SNSDs successfully produced apparent weakening, effectively reducing accelerations and base shears of the structures. The buckled-strut vertical isolation system (BSVIS) presented in this thesis combines the non-linear behavior of a laterally-loaded buckled strut with a linear spring. The lateral load-deflection relation for a buckled strut, which is nonlinear and displays negative stiffness, was investigated for various conditions to two- and three-term approximations of the deflected shape of a strut. This relation and the linear positive effect of a spring were superimposed to give the load-deflection relation of a BSVIS. An experimental prototype was fabricated and subjected to static tests. These tests confirmed the validity of the model and the effectiveness of adding a spring in parallel with a buckled strut to achieve isolation-level stiffness. Based on the theoretical and experimental findings, a design guide is proposed for the engineering of a BSVIS to protect a payload from vertical seismic content.« less
  5. Abstract

    Arboreal frogs navigate complex environments and face diverse mechanical properties within their physical environment. Such frogs may encounter substrates that are damped and absorb energy or are elastic and can store and release energy as the animal pushes off during take-off. When dealing with a compliant substrate, a well-coordinated jump would allow for the recovery of elastic energy stored in the substrate to amplify mechanical power, effectively adding an in-series spring to the hindlimbs. We tested the hypothesis that effective use of compliant substrates requires active changes to muscle activation and limb kinematics to recover energy from the substrate. We designed an actuated force platform, modulated with a real-time feedback controller to vary the stiffness of the substrate. We quantified the kinetics and kinematics of Cuban tree frogs (Osteopilus septentrionalis) jumping off platforms at four different stiffness conditions. In addition, we used electromyography to examine the relationship between muscle activation patterns and substrate compliance during take-off in a knee extensor (m. cruralis) and an ankle extensor (m. plantaris). We find O. septentrionalis do not modulate motor patterns in response to substrate compliance. Although not actively modulated, changes in the rate of limb extension suggest a trade-off between power amplificationmore »and energy recovery from the substrate. Our results suggest that compliant substrates disrupt the inertial catch mechanism that allows tree frogs to store elastic energy in the tendon, thereby slowing the rate of limb extension and increasing the duration of take-off. However, the slower rate of limb extension does provide additional time to recover more energy from the substrate. This work serves to broaden our understanding of how the intrinsic mechanical properties of a system may broaden an organism’s capacity to maintain performance when facing environmental perturbations.

    « less