Abstract BackgroundThe University of California system has a novel tenure-track education-focused faculty position called Lecturer with Security of Employment (working titles: Teaching Professor or Professor of Teaching). We focus on the potential difference in implementation of active-learning strategies by faculty type, including tenure-track education-focused faculty, tenure-track research-focused faculty, and non-tenure-track lecturers. In addition, we consider other instructor characteristics (faculty rank, years of teaching, and gender) and classroom characteristics (campus, discipline, and class size). We use a robust clustering algorithm to determine the number of clusters, identify instructors using active learning, and to understand the instructor and classroom characteristics in relation to the adoption of active-learning strategies. ResultsWe observed 125 science, technology, engineering, and mathematics (STEM) undergraduate courses at three University of California campuses using the Classroom Observation Protocol for Undergraduate STEM to examine active-learning strategies implemented in the classroom. Tenure-track education-focused faculty are more likely to teach with active-learning strategies compared to tenure-track research-focused faculty. Instructor and classroom characteristics that are also related to active learning include campus, discipline, and class size. The campus with initiatives and programs to support undergraduate STEM education is more likely to have instructors who adopt active-learning strategies. There is no difference in instructors in the Biological Sciences, Engineering, or Information and Computer Sciences disciplines who teach actively. However, instructors in the Physical Sciences are less likely to teach actively. Smaller class sizes also tend to have instructors who teach more actively. ConclusionsThe novel tenure-track education-focused faculty position within the University of California system represents a formal structure that results in higher adoption of active-learning strategies in undergraduate STEM education. Campus context and evolving expectations of the position (faculty rank) contribute to the symbols related to learning and teaching that correlate with differential implementation of active learning. 
                        more » 
                        « less   
                    
                            
                            Classroom Observations Indicate the Positive Impacts of Discipline-Based Professional Development
                        
                    
    
            We compared 236 geoscience instructors’ histories of professional development (PD) participation with classroom observations using the Reformed Teaching Observation Protocol (RTOP) that describe undergraduate classes as Student-Centered (score ≥ 50), Transitional (score 31–49) or Teacher-Centered (score ≤ 30). Instructors who attended PD (n = 111) have higher average RTOP scores (44.5 vs. 34.2) and are more frequently observed teaching Student-Centered classes (33% vs. 13%) than instructors with no PD (p < 0.001). Instructors who attended PD that is topically-aligned with content taught during the classroom observation are likely to have RTOP scores that are higher by 13.5 points (p < 0.0001), and are 5.6 times more likely to teach a Student-Centered class than instructors without topically-aligned PD. Comparable odds of teaching Student-Centered classes (5.8x) occur for instructors who attended two topical PD events but were observed teaching a different topic. Models suggest that instructors with at least 24 h of PD are significantly more likely to teach a Student-Centered class than instructors with fewer hours. Our results highlight the effectiveness of discipline-specific PD in impacting teaching practices, and the importance of attending more than one such PD event to aid transfer of learning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1022844
- PAR ID:
- 10122559
- Date Published:
- Journal Name:
- Journal for STEM Education Research
- ISSN:
- 2520-8705
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Numerous studies have shown that active learning and student-centered pedagogies lead to better student outcomes, such as higher grades, enhanced self-efficacy, and an increased sense of belonging. These outcomes are closely linked to higher levels of student engagement. To better understand the relationship between student engagement and pedagogical approach, our research documents what actually happens in CS1 classes that implement active learning. This paper presents a case study of two instructors, at different undergraduate institutions, teaching with Process Oriented Guided Inquiry Learning (POGIL) and Interactive Lectures. Using structured classroom observations and student surveys, we measure the engagement of the same students in different class periods taught by the same instructor. Our study investigates the differences and similarities in self-reported and observed student behaviors, as well as observed instructor behaviors. We examine how instructor behavior impacts student behavior. The results show significant differences in observed instructor and student behaviors based on the pedagogical approach. In class periods where instructors spoke more, students were more inclined to watch or listen rather than actively work or discuss, coupled with higher levels of student distraction. Our results provide insight into how specific teaching practices can lead to more engaging classrooms and better student outcomes.more » « less
- 
            Symmetry is a foundational concept in inorganic chemistry, essential for understanding molecular properties and interactions. Yet, little is known about how instructors teach symmetry or what shapes their instructional and curricular choices. To investigate this, we analyzed classroom observations from fourteen inorganic chemistry instructors from various institutions, focusing on their use of student-centered practices and emphasis on symmetry content. We then conducted semi-structured interviews to explore the reasoning behind their decisions, using the Teacher-Centered Systemic Reform (TCSR) model to interpret influences from personal factors (e.g., teaching experience), teacher thinking (e.g., beliefs about teaching and learning), and contextual factors (e.g., classroom layout). Minute-by-minute analyses of teaching revealed four instructional profiles (student-centered, high-interactive, low-interactive, and instructor-centered) and four content profiles, ranging from an emphasis on symmetry fundamentals (e.g., symmetry elements and operations, point group assignment) to symmetry applications (e.g., spectroscopy, molecular orbitals, character tables). Three themes emerged: (1) instructional approaches and content emphasis vary substantially across instructors; (2) more student-centered instructors tend to focus on foundational symmetry concepts and skills, whereas more instructor-centered instructors tend to prioritize advanced applications; and (3) instructors’ beliefs and prior experiences, more than personal and contextual factors, drive instructional decisions for teaching symmetry.more » « less
- 
            Although online courses have been a part of academia for nearly 30 years, they are still perceived as "different" than face-to-face instruction. Through in-depth interviews with four instructors, we explored how STEM faculty approach teaching asynchronous online undergraduate STEM courses. The faculty interviewed for this study viewed online courses as "not regular class[es]" and teaching those classes as "not teaching per se." Each of the instructors had assumptions about what a classroom was and about good instruction, but even for instructors who taught online for multiple years, those assumptions remained grounded in the face-to-face environment. There is a need for greater discussion about what it means to teach in an online environment.more » « less
- 
            null (Ed.)Abstract Students are more likely to learn in college science, technology, engineering, and math (STEM) classrooms when instructors use teacher discourse moves (TDMs) that encourage student engagement and learning. However, although teaching practices are well studied, TDMs are not well understood in college STEM classrooms. In STEM courses at a minority-serving institution (MSI; n = 74), we used two classroom observation protocols to investigate teaching practices and TDMs across disciplines, instructor types, years of teaching experience, and class size. We found that instructors guide students in active learning activities, but they use authoritative discourse approaches. In addition, chemistry instructors presented more than biology instructors. Also, teaching faculty had relatively high dialogic, interactive discourse, and neither years of faculty teaching experience nor class size had an impact on teaching practices or TDMs. Our results have implications for targeted teaching professional development efforts across instructor and course characteristics to improve STEM education at MSIs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    