skip to main content

Title: LaCAVR: Load and Constraints Aware Vehicle Rerouting
We present a prototype system for effective management of a delivery fleet in the settings in which the traffic abnormalities may necessitate rerouting of (some of) the trucks. Unforeseen congestions (e.g., due to accidents) may affect the average speed along road segments that were used to calculate the routes of a particular truck. Complementary to the traditional (re)routing approaches where the main objective is to find the new shortest route to the same destination but under the changed traffic circumstances, we incorporate two additional constraints. Namely, we aim at striking a balance between minimizing the additional expenses due to drivers overtime pay and maximizing the delivery of the goods still available on the truck’s load, possibly by changing the original destinations. The project is developed with an actual industry partner with main business of managing supplies for office pantries, kitchens and caf´es.
; ; ; ; ; ; ;
Award ID(s):
1823279 1823267 1213038
Publication Date:
Journal Name:
20th {IEEE} International Conference on Mobile Data Management, {MDM} 2019, Hong Kong, SAR, China, June 10-13, 2019
Page Range or eLocation-ID:
359 to 360
Sponsoring Org:
National Science Foundation
More Like this
  1. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely onmore »some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: (G. Koutsandria). (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively.« less
  2. Ride-sourcing services play an increasingly important role in meeting mobility needs in many metropolitan areas. Yet, aside from delivering passengers from their origins to destinations, ride-sourcing vehicles generate a significant number of vacant trips from the end of one customer delivery trip to the start of the next. These vacant trips create additional traffic demand and may worsen traffic conditions in urban networks. Capturing the congestion effect of these vacant trips poses a great challenge to the modeling practice of transportation planning agencies. With ride-sourcing services, vehicular trips are the outcome of the interactions between service providers and passengers, amore »missing ingredient in the current traffic assignment methodology. In this paper, we enhance the methodology by explicitly modeling those vacant trips, which include cruising for customers and deadheading for picking up them. Because of the similarity between taxi and ride-sourcing services, we first extend previous taxi network models to construct a base model, which assumes intranode matching between customers and idle ride-sourcing vehicles and thus, only considers cruising vacant trips. Considering spatial matching among multiple zones commonly practiced by ride-sourcing platforms, we further enhance the base model by encapsulating internode matching and considering both the cruising and deadheading vacant trips. A large set of empirical data from Didi Chuxing is applied to validate the proposed enhancement for internode matching. The extended model describes the equilibrium state that results from the interactions between background regular traffic and occupied, idle, and deadheading ride-sourcing vehicles. A solution algorithm is further proposed to solve the enhanced model effectively. Numerical examples are presented to demonstrate the model and solution algorithm. Although this study focuses on ride-sourcing services, the proposed modeling framework can be adapted to model other types of shared use mobility services.« less
  3. Mobile-application fingerprinting of network traffic is valuable for many security solutions as it provides insights into the apps active on a network. Unfortunately, existing techniques require prior knowledge of apps to be able to recognize them. However, mobile environments are constantly evolving, i.e., apps are regularly installed, updated, and uninstalled. Therefore, it is infeasible for existing fingerprinting approaches to cover all apps that may appear on a network. Moreover, most mobile traffic is encrypted, shows similarities with other apps, e.g., due to common libraries or the use of content delivery networks, and depends on user input, further complicating the fingerprintingmore »process. As a solution, we propose FlowPrint, a semi-supervised approach for fingerprinting mobile apps from (encrypted) network traffic. We automatically find temporal correlations among destination-related features of network traffic and use these correlations to generate app fingerprints. Our approach is able to fingerprint previously unseen apps, something that existing techniques fail to achieve. We evaluate our approach for both Android and iOS in the setting of app recognition, where we achieve an accuracy of 89.2%, significantly outperforming state-of-the-art solutions. In addition, we show that our approach can detect previously unseen apps with a precision of 93.5%, detecting 72.3% of apps within the first five minutes of communication.« less
  4. As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links maymore »become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network.« less
  5. Graph-based namespaces are being increasingly used to represent the organization of complex and ever-growing information eco-systems and individual user roles. Timely and accurate information dissemination requires an architecture with appropriate naming frameworks, adaptable to changing roles, focused on content rather than network addresses. Today's complex information organization structures make such dissemination very challenging. To address this, we propose POISE, a name-based publish/subscribe architecture for efficient topic-based and recipient-based content dissemination. POISE proposes an information layer, improving on state-of-the-art Information-Centric Networking solutions in two major ways: 1) support for complex graph-based namespaces, and 2) automatic name-based load-splitting. POISE supports in-network graph-basedmore »naming, leveraged in a dissemination protocol which exploits information layer rendezvous points (RPs) that perform name expansions. For improved robustness and scalability, POISE supports adaptive load-sharing via multiple RPs, each managing a dynamically chosen subset of the namespace graph. Excessive workload may cause one RP to turn into a ``hot spot'', impeding performance and reliability. To eliminate such traffic concentration, we propose an automated load-splitting mechanism, consisting of an enhanced, namespace graph partitioning complemented by a seamless, loss-less core migration procedure. Due to the nature of our graph partitioning and its complex objectives, off-the-shelf graph partitioning, e.g., METIS, is inadequate. We propose a hybrid, iterative bi-partitioning solution, consisting of an initial and a refinement phase. We also implemented POISE on a DPDK-based platform. Using the important application of emergency response, our experimental results show that POISE outperforms state-of-the-art solutions, demonstrating its effectiveness in timely delivery and load-sharing.« less