skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Equilibrium Analysis of Urban Traffic Networks with Ride-Sourcing Services
Ride-sourcing services play an increasingly important role in meeting mobility needs in many metropolitan areas. Yet, aside from delivering passengers from their origins to destinations, ride-sourcing vehicles generate a significant number of vacant trips from the end of one customer delivery trip to the start of the next. These vacant trips create additional traffic demand and may worsen traffic conditions in urban networks. Capturing the congestion effect of these vacant trips poses a great challenge to the modeling practice of transportation planning agencies. With ride-sourcing services, vehicular trips are the outcome of the interactions between service providers and passengers, a missing ingredient in the current traffic assignment methodology. In this paper, we enhance the methodology by explicitly modeling those vacant trips, which include cruising for customers and deadheading for picking up them. Because of the similarity between taxi and ride-sourcing services, we first extend previous taxi network models to construct a base model, which assumes intranode matching between customers and idle ride-sourcing vehicles and thus, only considers cruising vacant trips. Considering spatial matching among multiple zones commonly practiced by ride-sourcing platforms, we further enhance the base model by encapsulating internode matching and considering both the cruising and deadheading vacant trips. A large set of empirical data from Didi Chuxing is applied to validate the proposed enhancement for internode matching. The extended model describes the equilibrium state that results from the interactions between background regular traffic and occupied, idle, and deadheading ride-sourcing vehicles. A solution algorithm is further proposed to solve the enhanced model effectively. Numerical examples are presented to demonstrate the model and solution algorithm. Although this study focuses on ride-sourcing services, the proposed modeling framework can be adapted to model other types of shared use mobility services.  more » « less
Award ID(s):
1854684
PAR ID:
10328518
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transportation Science
Volume:
55
Issue:
6
ISSN:
0041-1655
Page Range / eLocation ID:
1260 to 1279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper considers off-street parking for the cruising vehicles of transportation network companies (TNCs) to reduce the traffic congestion. We propose a novel business that integrates the shared parking service into the TNC platform. In the proposed model, the platform (a) provides interfaces that connect passengers, drivers and garage operators (commercial or private garages); (b) determines the ride fare, driver payment, and parking rates; (c) matches passengers to TNC vehicles for ride-hailing services; and (d) matches vacant TNC vehicles to unoccupied parking garages to reduce the cruising cost. A queuing-theoretic model is proposed to capture the matching process of passengers, drivers, and parking garages. A market-equilibrium model is developed to capture the incentives of the passengers, drivers, and garage operators. An optimization-based model is formulated to capture the optimal pricing of the TNC platform. Through a realistic case study, we show that the proposed business model will offer a Pareto improvement that benefits all stakeholders, which leads to higher passenger surplus, higher drivers surplus, higher garage operator surplus, higher platform profit, and reduced traffic congestion. 
    more » « less
  2. Congested traffic wastes billions of liters of fuel and is a significant contributor to Green House Gas (GHG) emissions. Although convenient, ride sharing services such as Uber and Lyft are becoming a significant contributor to these emissions not only because of added traffic but by spending time on the road while waiting for passengers. To help improve the impact of ride sharing, we propose an algorithm to optimize the efficiency of drivers searching for customers. In our model, the main goal is to direct drivers represented as idle agents, i.e., not currently assigned a customer or resource, to locations where we predict new resources to appear. Our approach uses non-negative matrix factorization (NMF) to model and predict the spatio-temporal distributions of resources. To choose destinations for idle agents, we employ a greedy heuristic that strikes a balance between distance greed, i.e., to avoid long trips without resources and resource greed, i.e., to move to a location where resources are expected to appear following the NMF model. To ensure that agents do not oversupply areas for which resources are predicted and under supply other areas, we randomize the destinations of agents using the predicted resource distribution within the local neighborhood of an agent. Our experimental evaluation shows that our approach reduces the search time of agents and the wait time of resources using real-world data from Manhattan, New York, USA. 
    more » « less
  3. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation baselines. 
    more » « less
  4. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. Our evaluation results show that CityLines framework can achieve both short travel time and high ride-sharing ratio. 
    more » « less
  5. Urban dispersal events occur when an unexpectedly large number of people leave an area in a relatively short period of time. It is beneficial for the city authorities, such as law enforcement and city management, to have an advance knowledge of such events, as it can help them mitigate the safety risks and handle important challenges such as managing traffic, and so forth. Predicting dispersal events is also beneficial to Taxi drivers and/or ride-sharing services, as it will help them respond to an unexpected demand and gain competitive advantage. Large urban datasets such as detailed trip records and point of interest ( POI ) data make such predictions achievable. The related literature mainly focused on taxi demand prediction. The pattern of the demand was assumed to be repetitive and proposed methods aimed at capturing those patterns. However, dispersal events are, by definition, violations of those patterns and are, understandably, missed by the methods in the literature. We proposed a different approach in our prior work [32]. We showed that dispersal events can be predicted by learning the complex patterns of arrival and other features that precede them in time. We proposed a survival analysis formulation of this problem and proposed a two-stage framework (DILSA), where a deep learning model predicted the survival function at each point in time in the future. We used that prediction to determine the time of the dispersal event in the future, or its non-occurrence. However, DILSA is subject to a few limitations. First, based on evidence from the data, mobility patterns can vary through time at a given location. DILSA does not distinguish between different mobility patterns through time. Second, mobility patterns are also different for different locations. DILSA does not have the capability to directly distinguish between different locations based on their mobility patterns. In this article, we address these limitations by proposing a method to capture the interaction between POIs and mobility patterns and we create vector representations of locations based on their mobility patterns. We call our new method DILSA+. We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014 to 2016. Results show that DILSA+ can predict events in the next 5 hours with an F1-score of 0.66. It is significantly better than DILSA and the state-of-the-art deep learning approaches for taxi demand prediction. 
    more » « less