skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Information Diffusion Prediction via Recurrent Cascades Convolution
Effectively predicting the size of an information cascade is critical for many applications spanning from identifying viral marketing and fake news to precise recommendation and online advertising. Traditional approaches either heavily depend on underlying diffusion models and are not optimized for popularity prediction, or use complicated hand-crafted features that cannot be easily generalized to different types of cascades. Recent generative approaches allow for understanding the spreading mechanisms, but with unsatisfactory prediction accuracy. To capture both the underlying structures governing the spread of information and inherent dependencies between re-tweeting behaviors of users, we propose a semi-supervised method, called Recurrent Cascades Convolutional Networks (CasCN), which explicitly models and predicts cascades through learning the latent representation of both structural and temporal information, without involving any other features. In contrast to the existing single, undirected and stationary Graph Convolutional Networks (GCNs), CasCN is a novel multi-directional/dynamic GCN. Our experiments conducted on real-world datasets show that CasCN significantly improves the prediction accuracy and reduces the computational cost compared to state-of-the-art approaches.  more » « less
Award ID(s):
1823279 1823267
PAR ID:
10122600
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
35th {IEEE} International Conference on Data Engineering, {ICDE} 2019, Macao, China, April 8-11, 2019
Page Range / eLocation ID:
770 to 781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effectively modeling and predicting the information cascades is at the core of understanding the information diffusion, which is essential for many related downstream applications, such as fake news detection and viral marketing identification. Conventional methods for cascade prediction heavily depend on the hypothesis of diffusion models and hand-crafted features. Owing to the significant recent successes of deep learning in multiple domains, attempts have been made to predict cascades by developing neural networks based approaches. However, the existing models are not capable of capturing both the underlying structure of a cascade graph and the node sequence in the diffusion process which, in turn, results in unsatisfactory prediction performance. In this paper, we propose a deep multi-task learning framework with a novel design of shared-representation layer to aid in explicitly understanding and predicting the cascades. As it turns out, the learned latent representation from the shared-representation layer can encode the structure and the node sequence of the cascade very well. Our experiments conducted on real-world datasets demonstrate that our method can significantly improve the prediction accuracy and reduce the computational cost compared to state-of-the-art baselines. 
    more » « less
  2. null (Ed.)
    Knowing whether a published research result can be replicated is important. Carrying out direct replication of published research incurs a high cost. There are efforts tried to use machine learning aided methods to predict scientific claims’ replicability. However, existing machine learning aided approaches use only hand-extracted statistics features such as p-value, sample size, etc. without utilizing research papers’ text information and train only on a very small size of annotated data without making the most use of a large number of unlabeled articles. Therefore, it is desirable to develop effective machine learning aided automatic methods which can automatically extract text information as features so that we can benefit from Natural Language Processing techniques. Besides, we aim for an approach that benefits from both labeled and the large number of unlabeled data. In this paper, we propose two weakly supervised learning approaches that use automatically extracted text information of research papers to improve the prediction accuracy of research replication using both labeled and unlabeled datasets. Our experiments over real-world datasets show that our approaches obtain much better prediction performance compared to the supervised models utilizing only statistic features and a small size of labeled dataset. Further, we are able to achieve an accuracy of 75.76% for predicting the replicability of research. 
    more » « less
  3. We present 3DVNet, a novel multi-view stereo (MVS) depth-prediction method that combines the advantages of previous depth-based and volumetric MVS approaches. Our key idea is the use of a 3D scene-modeling network that iteratively updates a set of coarse depth predictions, resulting in highly accurate predictions which agree on the underlying scene geometry. Unlike existing depth-prediction techniques, our method uses a volumetric 3D convolutional neural network (CNN) that operates in world space on all depth maps jointly. The network can therefore learn meaningful scene-level priors. Furthermore, unlike existing volumetric MVS techniques, our 3D CNN operates on a feature-augmented point cloud, allowing for effective aggregation of multi-view information and flexible iterative refinement of depth maps. Experimental results show our method exceeds state-of-the-art accuracy in both depth prediction and 3D reconstruction metrics on the ScanNet dataset, as well as a selection of scenes from the TUM-RGBD and ICL-NUIM datasets. This shows that our method is both effective and generalizes to new settings. 
    more » « less
  4. Learning representations of sets of nodes in a graph is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in graph representation learning. However, expressive power of GNNs is limited by the 1-Weisfeiler-Lehman (WL) test and thus GNNs generate identical representations for graph substructures that may in fact be very different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on representing entire graphs and they are computationally inefficient as they cannot utilize sparsity of the underlying graph. Here we propose and mathematically analyze a general class of structure related features, termed Distance Encoding (DE). DE assists GNNs in representing any set of nodes, while providing strictly more expressive power than the 1-WL test. DE captures the distance between the node set whose representation is to be learned and each node in the graph. To capture the distance DE can apply various graph-distance measures such as shortest path distance or generalized PageRank scores. We propose two ways for GNNs to use DEs (1) as extra node features, and (2) as controllers of message aggregation in GNNs. Both approaches can utilize the sparse structure of the underlying graph, which leads to computational efficiency and scalability. We also prove that DE can distinguish node sets embedded in almost all regular graphs where traditional GNNs always fail. We evaluate DE on three tasks over six real networks: structural role prediction, link prediction, and triangle prediction. Results show that our models outperform GNNs without DE by up-to 15% in accuracy and AUROC. Furthermore, our models also significantly outperform other state-of-the-art methods especially designed for the above tasks. 
    more » « less
  5. Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN’s prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN’s prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs. 
    more » « less