skip to main content


Title: Impact of physical and social settings on parent engagement in learning through making
Previous research has documented the benefits of making for young learners, but few studies have examined how parents engage in maker activities during family visits to museums, both as facilitators of their children’s learning and as makers in their own right. In this study, we asked how caregivers participate in making and tinkering programs, how parents describe the benefits of making (for their children and themselves), and what aspects of the physical and social setting influence parents’ engagement. Data included observations of 88 family groups participating in various making and tinkering activities at a science center (including woodworking, fashion design, virtual reality drawing, circuit blocks, etc) and exit interviews with a subset of 66 caregivers. Qualitative data analysis connected observed qualities of the physical and social setting with caregivers’ observed and reported engagement. Through this analysis, we identified specific aspects of the physical environment, tools/materials, and facilitation strategies that invited family participation in general and that were associated with specific caregiver roles, including observing children’s learning, facilitation of children’s learning, and engagement as a maker alongside children. The implications of the findings for the design and facilitation of maker programs are discussed.  more » « less
Award ID(s):
1723640
NSF-PAR ID:
10122845
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Educational Research Association
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many studies have documented the impact of maker experiences on children's learning, but few have examined how caregivers participate in maker activities in museums, both as facilitators of their children's learning and as learners in their own right. This qualitative study involved observations and interviews with 88 caregivers participating in a range of making and tinkering activities at a science museum. Aspects of the physical setting (including the arrangement and familiarity of tools and materials) and social setting (including facilitators' interactions with children versus caregivers) influenced whether families participated and the roles that caregivers played (observing, facilitating, or making). Across these roles, caregivers described benefitting as learners -- by noticing their children's abilities and interests, learning new ways to support their children's learning, or fostering their own creativity. The results highlight strategies that museums can use to create inclusive maker activities that recognize caregivers' many roles and motivations during family visits. 
    more » « less
  2. null (Ed.)
    Research on interactions between caregivers and children have long been reported in science museum experiences. However, the interactions between caregivers and children in home environments are rarely investigated. By comparison, research on the experience of the engineering design challenge activities in a family context is even less. This case study aimed to examine interactions of two families in their home as they engaged with engineering design challenge kits that have the potential to support children’s foundational understanding of STEM concepts. Using social-cultural constructivism as a lens, about 370 minutes of video data was analyzed. Data coding revealed three types of interactions that facilitated children’s understanding of STEM concepts: teaching, build up, and synthesized moments. These three moments were interdependent but included different emphasis of caregivers’ and children’s engagement. Although there is a limitation of this study to generalize the findings, our results contribute to understand how caregivers and children play with the materials, tools, and their ideas in their home environments and how caregivers used different facilitation approaches without any training prior to engaging with the engineering kits. 
    more » « less
  3. Research on interactions between caregivers and children have long been reported in science museum experiences. However, the interactions between caregivers and children in home environments are rarely investigated. By comparison, research on the experience of the engineering design challenge activities in a family context is even less. This case study aimed to examine interactions of two families in their home as they engaged with engineering design challenge kits that have the potential to support children’s foundational understanding of STEM concepts. Using social-cultural constructivism as a lens, about 370 minutes of video data was analyzed. Data coding revealed three types of interactions that facilitated children’s understanding of STEM concepts: teaching, build up, and synthesized moments. These three moments were interdependent but included different emphasis of caregivers’ and children’s engagement. Although there is a limitation of this study to generalize the findings, our results contribute to understand how caregivers and children play with the materials, tools, and their ideas in their home environments and how caregivers used different facilitation approaches without any training prior to engaging with the engineering kits. 
    more » « less
  4. We began this project with three goals: (1) engage families in engineering activities, (2) increase the awareness of kids and caregivers as to what engineering is, and (3) increase children’ interest in engineering. We focused on caregivers and home environments because of the important role that at-home experiences with STEM play in triggering interest for many individuals who enter STEM professions. We created and distributed four different kits to families interested in engaging in STEM activities at home. Each kit included a challenge around engineering-related content (e.g., circuits, construction) and contained activity instructions (child) and a facilitation guide (caregivers). However, few instructions were given to caregivers about the expectations of their role while engaging with their children. This paper reports on the findings from family engagement in the Watercolor Bot kit. We sought to explore the roles enacted and behaviors utilized by caregivers as they supported their children during the activity. Our findings add to the conversation about how to define and conceptualize caregiver roles and how the home context/setting influences the types of supports caregivers provide. In contrast to emerging work on caregiver support, we argue that it may be more fruitful to think about the types of support (physical, verbal, content, and managerial) offered rather than defining specific roles (e.g., collaborator, project manager, etc.). We provide implications for designing kits and activities to include specific support for caregivers beyond simply providing project-specific instructions that address caregivers’ needs. 
    more » « less
  5. Our NSF-funded project, CoBuild19, sought to address the large-scale shift to at-home learning based on nationwide school closures that occurred during COVID-19 through creating making/STEM activities for families with children in grades K-6. Representing multiple organizations, our CoBuild19 project team developed approximately 60 STEM activities that make use of items readily available in most households. From March through June 2020, we produced and shared videos and activity guides, averaging 3+ new activities per week. Initially, the activities consisted of whatever team members could pull together, but we soon created weekly themes with associated activities, including Design and Prototype Week, Textiles Week, Social and Emotional Learning Week, and one week which highlighted kids sharing cooking and baking recipes for other kids. All activities were delivered fully online. To do so, our team started a Facebook group on March 13, 2020. Membership grew to 3490 followers by April 1st, to 4245 by May 1st, and leveled off at approximately 5100 members since June 2020. To date, 22 of our videos have over 1000 views, with the highest garnering 23K views. However, we had very little participation in the form of submitted videos, images, or text from families sharing what they were creating, limiting our possible analyses. While we had some initial participation by members, as the FB group grew, substantive evidence of participation faded. To better understand this drop, we polled FB group members about their use of the activities. Responses (n = 101) were dominated by the option, "We are glad to know the ideas are available, but we are not using much" (49%), followed by, "We occasionally do activities" (35%). At this point, we had no data about home participation, so we decided to experiment with different approaches. Our next efforts focused on conducting virtual maker/STEM camps. Leveraging the content produced in the first months of CoBuild19, we hosted two rounds of Camp CoBuild by the end of July, serving close to 100 campers. The camps generated richer data in the form of recorded Zoom camp sessions where campers made synchronously with educators and youth-created Flipgrid videos where campers shared their process and products for each activity. We also collected post-camp surveys and some caregiver interviews. Preliminary analyses have focused on the range of participant engagement and which malleable factors may be associated with deeper engagement. Initial feedback from caregivers indicated that their children gained confidence to experiment with simple materials through engaging in these activities. This project sought to fill what we perceived as a developing need in the community at a large scale (e.g., across the US). Although we have not achieved the level of success we expected, the project achieved quick growth that took us in a different direction than we originally intended. Overall, we created content that educators and families can use to engage kids with minimal materials. Additionally, we have a few models of extended engagement (e.g., Camp CoBuild) that we can develop further into future offerings. 
    more » « less