skip to main content


Title: Faithful Simulation of Distributed Quantum Measurements with Applications in Distributed Rate-Distortion Theory
We investigate faithful simulation of distributed quantum measurements as an extension of Winter's measurement compression theorem. We characterize a set of communication and common randomness rates needed to provide faithful simulation of distributed measurements. To achieve this, we introduce binning and mutual packing lemma for distributed quantum measurements. These techniques can be viewed as the quantum counterpart of their classical analogues. Finally, using these results, we develop a distributed quantum-to-classical rate distortion theory and characterize a rate region analogous to Berger-Tung's in terms of single-letter quantum mutual information quantities.  more » « less
Award ID(s):
1717299 2007878
NSF-PAR ID:
10123062
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Symposium on Information Theory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. —In this work, we address the lossy quantum-classical (QC) source coding problem, where the task is to compress the classical information about a quantum source, obtained after performing a measurement, below the Shannon entropy of the measurement outcomes, while incurring a bounded reconstruction error. We propose a new formulation, namely, "rate-channel theory", for the lossy QC source coding problem based on the notion of a backward (posterior) channel. We employ a singleletter posterior channel to capture the reconstruction error in place of the single-letter distortion observable. The formulation requires the reconstruction of the compressed quantum source to satisfy a block error constraint as opposed to the average singleletter distortion criterion in the rate-distortion setting. We also develop an analogous formulation for the classical variant with respect to a corresponding posterior channel. Furthermore, we characterize the asymptotic performance limit of the lossy QC and classical source coding problems in terms of single-letter quantum mutual information and mutual information quantities of the given posterior channel, respectively. We provide examples for the above formulations. 
    more » « less
  2. Abstract

    Distributed quantum computation is often proposed to increase the scalability of quantum hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum information between distant quantum devices. However, such exchange of quantum information itself poses unique engineering challenges, requiring high gate fidelity and costly non-local operations. To mitigate this, we propose near-term distributed quantum computing, focusing on approximate approaches that involve limited information transfer and conservative entanglement production. We first devise an approximate distributed computing scheme for the time evolution of quantum systems split across any combination of classical and quantum devices. Our procedure harnesses mean-field corrections and auxiliary qubits to link two or more devices classically, optimally encoding the auxiliary qubits to both minimize short-time evolution error and extend the approximate scheme's performance to longer evolution times. We then expand the scheme to include limited quantum information transfer through selective qubit shuffling or teleportation, broadening our method's applicability and boosting its performance. Finally, we build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms. To characterize our technique, we introduce a non-linear perturbation theory that discerns the critical role of our mean-field corrections in optimization and may be suitable for analyzing other non-linear quantum techniques. This fragmented pre-training is remarkably successful, reducing algorithmic error by orders of magnitude while requiring fewer iterations.

     
    more » « less
  3. Understanding the computational power of noisy intermediate-scale quantum (NISQ) devices is of both fundamental and practical importance to quantum information science. Here, we address the question of whether error-uncorrected noisy quantum computers can provide computational advantage over classical computers. Specifically, we study noisy random circuit sampling in one dimension (or 1D noisy RCS) as a simple model for exploring the effects of noise on the computational power of a noisy quantum device. In particular, we simulate the real-time dynamics of 1D noisy random quantum circuits via matrix product operators (MPOs) and characterize the computational power of the 1D noisy quantum system by using a metric we call MPO entanglement entropy. The latter metric is chosen because it determines the cost of classical MPO simulation. We numerically demonstrate that for the two-qubit gate error rates we considered, there exists a characteristic system size above which adding more qubits does not bring about an exponential growth of the cost of classical MPO simulation of 1D noisy systems. Specifically, we show that above the characteristic system size, there is an optimal circuit depth, independent of the system size, where the MPO entanglement entropy is maximized. Most importantly, the maximum achievable MPO entanglement entropy is bounded by a constant that depends only on the gate error rate, not on the system size. We also provide a heuristic analysis to get the scaling of the maximum achievable MPO entanglement entropy as a function of the gate error rate. The obtained scaling suggests that although the cost of MPO simulation does not increase exponentially in the system size above a certain characteristic system size, it does increase exponentially as the gate error rate decreases, possibly making classical simulation practically not feasible even with state-of-the-art supercomputers. 
    more » « less
  4. Abstract Quantum cellular automata (QCA) evolve qubits in a quantum circuit depending only on the states of their neighborhoods and model how rich physical complexity can emerge from a simple set of underlying dynamical rules. The inability of classical computers to simulate large quantum systems hinders the elucidation of quantum cellular automata, but quantum computers offer an ideal simulation platform. Here, we experimentally realize QCA on a digital quantum processor, simulating a one-dimensional Goldilocks rule on chains of up to 23 superconducting qubits. We calculate calibrated and error-mitigated population dynamics and complex network measures, which indicate the formation of small-world mutual information networks. These networks decohere at fixed circuit depth independent of system size, the largest of which corresponding to 1,056 two-qubit gates. Such computations may enable the employment of QCA in applications like the simulation of strongly-correlated matter or beyond-classical computational demonstrations. 
    more » « less
  5. Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum computation among quantum computers. In this work, we describe a quantum walk protocol to perform distributed quantum computing in a quantum network. The protocol uses a quantum walk as a quantum control signal to perform distributed quantum operations. We consider a generalization of the discrete-time coined quantum walk model that accounts for the interaction between a quantum walker system in the network graph with quantum registers inside the network nodes. The protocol logically captures distributed quantum computing, abstracting hardware implementation and the transmission of quantum information through channels. Control signal transmission is mapped to the propagation of the walker system across the network, while interactions between the control layer and the quantum registers are embedded into the application of coin operators. We demonstrate how to use the quantum walker system to perform a distributed CNOT operation, which shows the universality of the protocol for distributed quantum computing. Furthermore, we apply the protocol to the task of entanglement distribution in a quantum network. 
    more » « less