skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Formulation of Lossy Quantum-Classical and Classical Source Coding based on a Posterior Channel
—In this work, we address the lossy quantum-classical (QC) source coding problem, where the task is to compress the classical information about a quantum source, obtained after performing a measurement, below the Shannon entropy of the measurement outcomes, while incurring a bounded reconstruction error. We propose a new formulation, namely, "rate-channel theory", for the lossy QC source coding problem based on the notion of a backward (posterior) channel. We employ a singleletter posterior channel to capture the reconstruction error in place of the single-letter distortion observable. The formulation requires the reconstruction of the compressed quantum source to satisfy a block error constraint as opposed to the average singleletter distortion criterion in the rate-distortion setting. We also develop an analogous formulation for the classical variant with respect to a corresponding posterior channel. Furthermore, we characterize the asymptotic performance limit of the lossy QC and classical source coding problems in terms of single-letter quantum mutual information and mutual information quantities of the given posterior channel, respectively. We provide examples for the above formulations.  more » « less
Award ID(s):
2007878 2132815
PAR ID:
10466975
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-7554-9
Page Range / eLocation ID:
743 to 748
Format(s):
Medium: X
Location:
Taipei, Taiwan
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the rate-limited quantum-to-classical optimal transport in terms of output-constrained rate-distortion coding for discrete quantum measurement systems with limited classical common randomness. The main coding theorem provides the achievable rate region of a lossy measurement source coding for an exact construction of the destination distribution (or the equivalent quantum state) while maintaining a threshold of distortion from the source state according to a generally defined distortion observable. The constraint on the output space fixes the output distribution to an i.i.d. predefined probability mass function. Therefore, this problem can also be viewed as information-constrained optimal transport which finds the optimal cost of transporting the source quantum state to the destination state via an entanglement-breaking channel with limited communication rate and common randomness. 
    more » « less
  2. We investigate faithful simulation of distributed quantum measurements as an extension of Winter's measurement compression theorem. We characterize a set of communication and common randomness rates needed to provide faithful simulation of distributed measurements. To achieve this, we introduce binning and mutual packing lemma for distributed quantum measurements. These techniques can be viewed as the quantum counterpart of their classical analogues. Finally, using these results, we develop a distributed quantum-to-classical rate distortion theory and characterize a rate region analogous to Berger-Tung's in terms of single-letter quantum mutual information quantities. 
    more » « less
  3. We consider the task of communicating a generic bivariate function of two classical correlated sources over a Classical-Quantum Multiple Access Channel (CQ-MAC). The two sources are observed at the encoders of the CQ-MAC, and the decoder aims at reconstructing a bivariate function from the received quantum state. We first propose a coding scheme based on asymptotically good algebraic structured codes, in particular, nested coset codes, and provide a set of sufficient conditions for the reconstruction of the function of the sources over a CQ- MAC. The proposed technique enables the decoder to recover the desired function without recovering the sources themselves. We further improve this by employing a coding scheme based on a classical superposition of algebraic structured codes and unstructured codes. This coding scheme allows exploiting the symmetric structure common amongst the sources and also leverage the asymmetries. We derive a new set of sufficient conditions that strictly enlarges the largest known set of sources whose function can be reconstructed over any given CQ-MAC, and identify examples demonstrating the same. We provide these conditions in terms of single-letter quantum information- theoretic quantities. 
    more » « less
  4. In the quantum compression scheme proposed by Schumacher, Alice compresses a message that Bob decompresses. In that approach, there is some probability of failure and, even when successful, some distortion of the state. For sufficiently large blocklengths, both of these imperfections can be made arbitrarily small while achieving a compression rate that asymp- totically approaches the source coding bound. However, direct implementation of Schumacher compression suffers from poor circuit complexity. In this paper, we consider a slightly different approach based on classical syndrome source coding. The idea is to use a linear error-correcting code and treat the state to be compressed as a superposition of error patterns. Then, Alice can use quantum gates to apply the parity-check matrix to her message state. This will convert it into a superposition of syndromes. If the original superposition was supported on correctable errors (e.g., coset leaders), then this process can be reversed by decoding. An implementation of this based on polar codes is described and simulated. As in classical source coding based on polar codes, Alice maps the information into the “frozen” qubits that constitute the syndrome. To decompress, Bob utilizes a quantum version of successive cancellation coding. 
    more » « less
  5. A new class of structured codes called quasi group codes (QGCs) is introduced. A QGC is a subset of a group code. In contrast with the group codes, QGCs are not closed under group addition. The parameters of the QGC can be chosen, such that the size of C C is equal to any number between C and C 2 . We analyze the performance of a specific class of QGCs. This class of QGCs is constructed by assigning single-letter distributions to the indices of the codewords in a group code. Then, the QGC is defined as the set of codewords whose index is in the typical set corresponding to these singleletter distributions. The asymptotic performance limits of this class of QGCs are characterized using single-letter information quantities. Corresponding covering and packing bounds are derived. It is shown that the point-to-point channel capacity and optimal rate-distortion function are achievable using QGCs. Coding strategies based on QGCs are introduced for three fundamental multi-terminal problems: the Körner-Marton problem for modulo prime-power sums, computation over the multiple access channel (MAC), and MAC with distributed states. For each problem, a single-letter achievable rate-region is derived. It is shown, through examples, that the coding strategies improve upon the previous strategies based on the unstructured codes, linear codes, and group codes. Index Terms— Quasi structure 
    more » « less