skip to main content


Title: SafeExit4AII: An Inclusive Indoor Emergency Evacuation System for People With Disabilities
Indoor wayfinding has remained a challenge for people with disabilities in unfamiliar environments. With some accessible indoor wayfinding systems coming to the fore recently, a major application of interest is that of emergency evacuation due to natural or man-made threats to safety. Independent emergency evacuations can be particularly challenging for persons with disabilities as there is usually a requirement to quickly gather and use alternative wayfinding information to exit the indoor space safely. This paper presents the design and evaluation of an inclusive emergency evacuation system called SafeExit4All that empowers people with disabilities (in addition to the general population) to independently find a safe exit under emergency scenarios. The Safe-Exit4All application drives an underlying accessible indoor wayfinding system with the necessary emergency evacuation system parameters customized to an individual's preferences and needs for exiting safely from a premise. Upon receiving an emergency alert, a user accesses the SafeExit4All system through an app on their smartphone that has access to real-time information about the threat, and simply follows on-screen turn-by-turn navigation instructions towards the closest safe exit. Human subject evaluations show Safe-Exit4All to be effective not just in terms of reducing evacuation time, but also in providing guidance that results in users taking deterministic, shorter, and safer paths to the exit most suitable for them.  more » « less
Award ID(s):
1737433
NSF-PAR ID:
10123203
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Web4All
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During emergencies communicating in multi-level built environment becomes challenging because architectural complexity can create problems with visual and mental representation of 3D space. Our Hololens application gives a visual representation of a building on campus in 3D space, allowing people to see where exits are in the building as well as creating alerts for anomalous behavior for emergency response such as active shooter, fire, and smoke. It also gives path to the various exits; shortest path to the exits as well as directions to a safe zone from their current position. The augmented reality (AR) application was developed in Unity 3D for Microsoft HoloLens and also is deployed on tablets and smartphones. It is a fast and robust marker detection technique inspired by the use of Vuforia AR library. Our aim is to enhance the evacuation process by ensuring that all building patrons know all of the building exits and how to get to them, which improves evacuation time and eradicates the injuries and fatalities occurring during indoor crises such as building fires and active shooter events. We have incorporated existing permanent features in the building as markers for the AR application to trigger the floor plan and subsequent location of the person in the building. This work also describes the system architecture as well as the design and implementation of this AR application to leverage HoloLens for building evacuation purposes. We believe that AR technologies like HoloLens could be adopted for all building evacuating strategies during emergencies as it offers a more 
    more » « less
  2. Given the challenges of wayfinding in large indoor built environments, especially for persons with disabilities (PWDs), a new class of accessible technologies called built environment accessible technologies (BEAT) are being developed. Such technologies are envisioned to help achieve product and opportunity parity for PWDs. The impact and adoption of these BEATs depends largely on clear and quantifiable (tangible and intangible) economic benefits accrued to the end-users and stakeholders. This paper describes the results of a survey conducted to measure potential benefits in terms of quality of life and quality of work life (work productivity) by increased accessibility provisions within built environments as it relates to navigation for PWDs and those without disabilities. Results of this work indicate that BEATs have the greatest potential to improve mobility and exploratory activities for people with disabilities, exploratory activities for people without disabilities, and improve job security for everyone. 
    more » « less
  3. This paper presents a brief overview of the various (related) research the author has been involved with in the area of navigation and wayfinding for people with visual impairments. The first major piece of research presented is that of the building and deployment of a beacon-based indoor navigation and wayfinding system called GuideBeacon for people with visual impairments. The second major piece of research presented is a broader community-based effort called CityGuide to enable various location-based services (including navigation and wayfinding) in both indoor and outdoor environments for people with disabilities. The paper concludes by summarizing a specific challenge in the area that warrant future research attention. 
    more » « less
  4. Modern buildings with increasing complexity can cause serious difficulties for first responders in emergency wayfinding. While real-time data collection and information analytics become easier in indoor wayfinding, a new challenge has arisen: cognitive overload due to information redundancy. Standardized and universal spatial information systems are still widely used in emergency wayfinding, ignoring first responders’ individual difference in information intake. This paper proposes and tests the theoretical framework of a spatial information systems for first responders, which reflects their individual difference in information preference and helps reduce the cognitive load in line of duty. The proposed method includes the use of Virtual Reality (VR) experiments to simulate real world buildings, and the modeling of first responders’ reactions to different information formats and contents in simulated wayfinding tasks. This work is expected to set a foundation of future spatial information system that correctly and effectively responds to first responders’ needs. 
    more » « less
  5. Blind & visually impaired individuals often face challenges in wayfinding in unfamiliar environments. Thus, an accessible indoor positioning and navigation system that safely and accurately positions and guides such individuals would be welcome. In indoor positioning, both Bluetooth Low Energy (BLE) beacons and Google Tango have their individual strengths but also have weaknesses that can affect the overall usability of a system that solely relies on either component. We propose a hybrid positioning and navigation system that combines both BLE beacons and Google Tango in order to tap into their strengths while minimizing their individual weaknesses. In this paper, we will discuss the approach and implementation of a BLE- and Tango-based hybrid system. The results of pilot tests on the individual components and a human subject test on the full BLE and hybrid systems are also presented. In addition, we have explored the use of vibrotactile devices to provide additional information to a user about their surroundings. 
    more » « less