skip to main content


Title: Urea as a source of nitrogen to giant kelp ( Macrocystis pyrifera ): Urea use by giant kelp
Award ID(s):
1831937 1232779
NSF-PAR ID:
10123259
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
3
Issue:
4
ISSN:
2378-2242
Page Range / eLocation ID:
365 to 373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urea is an available and readily used source of nitrogen for giant kelp,Macrocystis pyrifera, but little is known about its potential importance for sustaining growth. Results of kinetic experiments indicate urea uptake saturates at an average maximum rate (Vmax) of 0.73–0.92 μmol N g dw−1h−1with a half saturation constant (Ks) of 1.02–1.08 μM. The affinity of giant kelp for urea was high relative to that reported for other seaweeds. However, results of similar kinetics experiments with natural, co‐occurring phytoplankton communities indicate that the rate of urea uptake by phytoplankton was > 10‐fold higher than that of giant kelp. Urea uptake by giant kelp decreased 3–12% in darkness (relative to in light) compared to a 66–85% decline for phytoplankton. Similar differences were observed for ammonium and nitrate, suggesting that light intensity and photocycles influence the outcome of competition for N between giant kelp and phytoplankton. Monthly measures of urease in kelp tissues revealed persistent activity at levels that were 100‐fold higher than rates of urea uptake (0.13–0.35 μmol N g fw−1min−1). This finding, coupled with unsuccessful efforts to induce additional urease activity through substrate additions, suggests that urease plays a role in giant kelp physiology beyond that of processing urea taken up from the environment. Collectively, our results suggest giant kelp uses multiple forms of N including urea to sustain year‐round growth. Its consistent capacity to acquire N during both day and night may help offset its low uptake rates relative to phytoplankton and increase its ability to compete for N during periods of low N availability.

     
    more » « less
  2. Production rates reported for canopy‐forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelpMacrocystis pyriferaare based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity ofM. pyriferaand co‐occurring understory kelpsHedophyllum nigripesandNeoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m−2· year−1from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitudeM. pyriferadwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration ofM. pyriferaforest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment.

     
    more » « less
  3. Stewart, Frank J. (Ed.)
    ABSTRACT Here, we report the draft genome sequence of Nereida sp. strain MMG025, isolated from the surface of giant kelp and assembled and analyzed by undergraduate students participating in a marine microbial genomics course. A genomic comparison suggests that MMG025 is a novel species, providing a resource for future microbiology and biotechnology investigations. 
    more » « less
  4. Abstract Background and Aims

    The increased likelihood and severity of storm events has brought into focus the role of coastal ecosystems in provision of shoreline protection by attenuating wave energy. Canopy-forming kelps, including giant kelp (Macrocystis pyrifera), are thought to provide this ecosystem service, but supporting data are extremely limited. Previous in situ examinations relied mostly on comparisons between nominally similar sites with and without kelp. Given that other factors (especially seafloor bathymetry and topographic features) often differ across sites, efforts to isolate the effects of kelp on wave energy propagation confront challenges. In particular, it can be difficult to distinguish wave energy dissipation attributable to kelp from frictional processes at the seabed that often covary with the presence of kelp. Here, we use an ecological transition from no kelp to a full forest, at a single site with static bathymetry, to resolve unambiguously the capacity of giant kelp to damp waves.

    Methods

    We measured waves within and outside rocky reef habitat, in both the absence and the presence of giant kelp, at Marguerite Reef, Palos Verdes, CA, USA. Nested within a broader kelp restoration project, this site transitioned from a bare state to one supporting a fully formed forest (density of 8 stipes m−2). We quantified, as a function of incident wave conditions, the decline in wave energy flux attributable to the presence of kelp, as waves propagated from outside and into reef habitat.

    Key Results

    The kelp forest damped wave energy detectably, but to a modest extent. Interactions with the seabed alone reduced wave energy flux, on average, by 12 ± 1.4 % over 180 m of travel. The kelp forest induced an additional 7 ± 1.2 % decrease. Kelp-associated declines in wave energy flux were slightly greater for waves of longer periods and smaller wave heights.

    Conclusions

    Macrocystis pyrifera forests have a limited, albeit measurable, capacity to enhance shoreline protection from nearshore waves. Expectations that giant kelp forests, whether extant or enhanced through restoration, have substantial impacts on wave-induced coastal erosion might require re-evaluation.

     
    more » « less