skip to main content


Search for: All records

Award ID contains: 1831937

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species’ population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution ofMacrocystis pyriferais composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Introduction

    Changes in temperature can fundamentally transform how species interact, causing wholesale shifts in ecosystem dynamics and stability. Yet we still have a limited understanding of how temperature-dependence in physiology drives temperature-dependence in species-interactions. For predator-prey interactions, theory predicts that increases in temperature drive increases in metabolism and that animals respond to this increased energy expenditure by ramping up their food consumption to meet their metabolic demand. However, if consumption does not increase as rapidly with temperature as metabolism, increases in temperature can ultimately cause a reduction in consumer fitness and biomass via starvation.

    Methods

    Here we test the hypothesis that increases in temperature cause more rapid increases in metabolism than increases in consumption using the California spiny lobster (Panulirus interruptus) as a model system. We acclimated individual lobsters to temperatures they experience sacross their biogeographic range (11, 16, 21, or 26°C), then measured whether lobster consumption rates are able to meet the increased metabolic demands of rising temperatures.

    Results and discussion

    We show positive effects of temperature on metabolism and predation, but in contrast to our hypothesis, rising temperature caused lobster consumption rates to increase at a faster rate than increases in metabolic demand, suggesting that for the mid-range of temperatures, lobsters are capable of ramping up consumption rates to increase their caloric demand. However, at the extreme ends of the simulated temperatures, lobster biology broke down. At the coldest temperature, lobsters had almost no metabolic activity and at the highest temperature, 33% of lobsters died. Our results suggest that temperature plays a key role in driving the geographic range of spiny lobsters and that spatial and temporal shifts in temperature can play a critical role in driving the strength of species interactions for a key predator in temperate reef ecosystems.

     
    more » « less
  3. Abstract

    Algal carbon‐to‐nitrogen (C:N) and carbon‐to‐phosphorus (C:P) ratios are fundamental for understanding many oceanic biogeochemical processes, such as nutrient flux and climate regulation. We synthesized literature data (444 species, >400 locations) and collected original samples from Tasmania, Australia (51 species, 10 locations) to update the global ratios of seaweed carbon‐to‐nitrogen (C:N) and carbon‐to‐phosphorus (C:P). The updated global mean molar ratio for seaweed C:N is 20 (ranging from 6 to 123) and for C:P is 801 (ranging from 76 to 4102). The C:N and C:P ratios were significantly influenced by seawater inorganic nutrient concentrations and seasonality. Additionally, C:N ratios varied by phyla. Brown seaweeds (Ochrophyta, Phaeophyceae) had the highest mean C:N of 27.5 (range: 7.6–122.5), followed by green seaweeds (Chlorophyta) of 17.8 (6.2–54.3) and red seaweeds (Rhodophyta) of 14.8 (5.6–77.6). We used the updated C:N and C:P values to compare seaweed tissue stoichiometry with the most recently reported values for plankton community stoichiometry. Our results show that seaweeds have on average 2.8 and 4.0 times higher C:N and C:P than phytoplankton, indicating seaweeds can assimilate more carbon in their biomass for a given amount of nutrient resource. The stoichiometric comparison presented herein is central to the discourse on ocean afforestation (the deliberate replacement of phytoplankton with seaweeds to enhance the ocean biological carbon sink) by contributing to the understanding of the impact of nutrient reallocation from phytoplankton to seaweeds under large‐scale seaweed cultivation.

     
    more » « less
  4. Abstract

    Ocean warming has both direct physiological and indirect ecological consequences for marine organisms. Sessile animals may be particularly vulnerable to anomalous warming given constraints in food acquisition and reproduction imposed by sessility. In temperate reef ecosystems, sessile suspension feeding invertebrates provide food for an array of mobile species and act as a critical trophic link between the plankton and the benthos. Using 14 years of seasonal benthic community data across five coastal reefs, we evaluated how communities of sessile invertebrates in southern California kelp forests responded to the “Blob”, a period of anomalously high temperatures and low phytoplankton production. We show that this event had prolonged consequences for kelp forest ecosystems. Changes to community structure, including species invasions, have persisted six years post-Blob, suggesting that a climate-driven shift in California kelp forests is underway.

     
    more » « less
  5. Abstract

    Kelp forests are complex underwater habitats that form the foundation of many nearshore marine environments and provide valuable services for coastal communities. Despite their ecological and economic importance, increasingly severe stressors have resulted in declines in kelp abundance in many regions over the past few decades, including the North Coast of California, USA. Given the significant and sustained loss of kelp in this region, management intervention is likely a necessary tool to reset the ecosystem and geospatial data on kelp dynamics are needed to strategically implement restoration projects. Because canopy‐forming kelp forests are distinguishable in aerial imagery, remote sensing is an important tool for documenting changes in canopy area and abundance to meet these data needs. We used small unoccupied aerial vehicles (UAVs) to survey emergent kelp canopy in priority sites along the North Coast in 2019 and 2020 to fill a key data gap for kelp restoration practitioners working at local scales. With over 4,300 hectares surveyed between 2019 and 2020, these surveys represent the two largest marine resource‐focused UAV surveys conducted in California to our knowledge. We present remote sensing methods using UAVs and a repeatable workflow for conducting consistent surveys, creating orthomosaics, georeferencing data, classifying emergent kelp and creating kelp canopy maps that can be used to assess trends in kelp canopy dynamics over space and time. We illustrate the impacts of spatial resolution on emergent kelp canopy classification between different sensors to help practitioners decide which data stream to select when asking restoration and management questions at varying spatial scales. Our results suggest that high spatial resolution data of emergent kelp canopy from UAVs have the potential to advance strategic kelp restoration and adaptive management.

     
    more » « less
  6. Abstract

    Calls for using marine protected areas (MPAs) to achieve goals for nature and people are increasing globally. While the conservation and fisheries impacts of MPAs have been comparatively well‐studied, impacts on other dimensions of human use have received less attention. Understanding how humans engage with MPAs and identifying traits of MPAs that promote engagement is critical to designing MPA networks that achieve multiple goals effectively, equitably and with minimal environmental impact.

    In this paper, we characterize human engagement in California's MPA network, the world's largest MPA network scientifically designed to function as a coherent network (124 MPAs spanning 16% of state waters and 1300 km of coastline) and identify traits associated with higher human engagement. We assemble and compare diverse indicators of human engagement that capture recreational, educational and scientific activities across California's MPAs.

    We find that human engagement is correlated with nearby population density and that site “charisma” can expand human engagement beyond what would be predicted based on population density alone. Charismatic MPAs tend to be located near tourist destinations, have long sandy beaches and be adjacent to state parks and associated amenities. In contrast, underutilized MPAs were often more remote and lacked both sandy beaches and parking lot access.

    Synthesis and applications: These results suggest that achieving MPA goals associated with human engagement can be promoted by developing land‐based amenities that increase access to coastal MPAs or by locating new MPAs near existing amenities during the design phase. Alternatively, human engagement can be limited by locating MPAs in areas far from population centres, coastal amenities or sandy beaches. Furthermore, managers may want to prioritize monitoring, enforcement, education and outreach programmes in MPAs with traits that predict high human engagement. Understanding the extent to which human engagement impacts the conservation performance of MPAs is a critical next step to designing MPAs that minimize tradeoffs among potentially competing objectives.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  7. Abstract

    How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross‐taxonomic relationships could be used to predict how strongly individual species interact.

    Here, we ask how accurately do general size‐scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time?

    To address this question, we quantified the size and density dependence of the functional response of the California spiny lobsterPanulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchinStrongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster–urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size‐scaling relationships from the literature.

    Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size—relative to density—accounted for up to 87% of the spatio‐temporal variation in interaction strength. However, general size‐scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions.

    Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size‐frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species‐specific estimates for the scaling of interaction strength with body size, rather than general size‐scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.

     
    more » « less
  8. Abstract

    Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual‐based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down. We then examined interdependencies between changes in abundance, evenness and richness in more than 1100 assemblages sampled either through time or across space. As predicted, richness changes were greatest when abundance and evenness changed in the same direction, and countervailing changes in abundance and evenness acted to constrain the magnitude of changes in species richness. Site‐to‐site differences in abundance, evenness, and richness were often decoupled, and pairwise relationships between these components across assemblages were weak. In contrast, changes in species richness and relative abundance were strongly correlated for assemblages varying through time. Temporal changes in local biodiversity showed greater inertia and stronger relationships between the component changes when compared to site‐to‐site variation. Overall, local variation in assemblage diversity was rarely due to repeated passive samples from an approximately static species abundance distribution. Instead, changing species relative abundances often dominated local variation in diversity. Moreover, how changing relative abundances combined with changes to total abundance frequently determined the magnitude of richness changes. Embracing the interdependencies between changing abundance, evenness and richness can provide new information to better understand biodiversity change in the Anthropocene.

     
    more » « less
  9. Abstract

    The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.

     
    more » « less
  10. Abstract

    Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.

     
    more » « less