skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Concept Map of Evolutionary Biology to Promote Meaningful Learning in Biology
Award ID(s):
1832194
PAR ID:
10123273
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The American Biology Teacher
Volume:
81
Issue:
2
ISSN:
0002-7685
Page Range / eLocation ID:
79 to 87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce biology to the artist’s design tool, the storyboard. This versatile organizing and visualizing artistic platform is introduced into the biology classroom to aid in an inventive and focused discovery process. Almost all biological concepts are dynamic, and storyboards offer biology, lecture, wet and computational labs, flexibility, inventiveness, and an opportunity for students to slow down the so-called steps of biological processes and moderate their observations. Storyboarding is a thoughtful and reflective discovery device with enormous potential to break with traditional biology classroom experiences and return to the root of the educational process: storytelling. It will encourage teachers to embark on the remodeling of the biological curriculum with specific technical skills that students and teachers should consider developing to make the STEAM experience tailored to the uniqueness of biological systems. Storyboards offer hands-on, illustrative, and interactive conversations about biology concepts. They are an “unplugged” and contemplative experiences, organizing frameworks for personal expression focused on biological wonders. 
    more » « less
  2. null (Ed.)
    Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that inter-exciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow. 
    more » « less
  3. Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow. 
    more » « less