There are many initiatives that teach Artificial Intelligence (AI) literacy to K-12 students. Most downsize college-level instructional materials to grade-level appropriate formats, overlooking students' unique perspectives in the design of curricula. To investigate the use of educational games as a vehicle for uncovering youth's understanding of AI instruction, we co-designed games with 39 Black, Hispanic, and Asian high school girls and non-binary youth to create engaging learning materials for their peers. We conducted qualitative analyses on the designed game artifacts, student discourse, and their feedback on the efficacy of learning activities. This study highlights the benefits of co-design and learning games to uncover students' understanding and ability to apply AI concepts in game-based learning, their emergent perspectives of AI, and the prior knowledge that informs their game design choices. Our research uncovers students' AI misconceptions and informs the design of educational games and grade-level appropriate AI instruction.
more »
« less
Toward Automated Critique for Student-Created Interactive Narrative Projects
Automated feedback has the potential to provide sig- nificant assistance to student game creators. Here, we present a system for generating automated, critique- like feedback for students creating games in the Study- Crafter platform. We implemented a system that builds a personalized feedback report for students based on a templated format. This critique uses automated analysis of structural and interactive aspects of the game narra- tive and recommends alternate games for students to ex- amine as inspiration. To test our system, we conducted a pilot study with 10 student groups developing narrative- based games. A key understanding from the study is that determining the appropriate depth of assessment and critique without overwhelming the student is important.
more »
« less
- Award ID(s):
- 1736065
- PAR ID:
- 10123274
- Date Published:
- Journal Name:
- Proceedings of the ... AAAI Conference on Artificial Intelligence
- ISSN:
- 2374-3468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms.more » « less
-
null (Ed.)The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms.more » « less
-
This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs.more » « less
-
Educational video games can engage students in authentic STEM practices, which often involve visual representations. In particular, because most interactions within video games are mediated through visual representations, video games provide opportunities for students to experience disciplinary practices with visual representations. Prior research on learning with visual representations in non-game contexts suggests that visual representations may confuse students if they lack prerequisite representational-competencies. However, it is unclear how this research applies to game environments. To address this gap, we investigated the role of representational-competencies for students’ learning from video games. We first conducted a single-case study of a high-performing undergraduate student playing an astronomy game as an assignment in an astronomy course. We found that this student had difficulties making sense of the visual representations in the game. We interpret these difficulties as indicating a lack of representational-competencies. Further, these difficulties seemed to lead to the student’s inability to relate the game experiences to the content covered in his astronomy course. A second study investigated whether interventions that have proven successful in structured learning environments to support representational-competencies would enhance students’ learning from visual representations in the video game. We randomly assigned 45 students enrolled in an undergraduate course to two conditions. Students either received representational-competency support while playing the astronomy game or they did not receive this support. Results showed no effects of representational-competency supports. This suggests that instructional designs that are effective for representational-competency supports in structured learning environments may not be effective for educational video games. We discuss implications for future research, for designers of educational games, and for educators.more » « less
An official website of the United States government

