skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Escape or D13: Understanding Youth Perspectives of AI through Educational Game Co-design
There are many initiatives that teach Artificial Intelligence (AI) literacy to K-12 students. Most downsize college-level instructional materials to grade-level appropriate formats, overlooking students' unique perspectives in the design of curricula. To investigate the use of educational games as a vehicle for uncovering youth's understanding of AI instruction, we co-designed games with 39 Black, Hispanic, and Asian high school girls and non-binary youth to create engaging learning materials for their peers. We conducted qualitative analyses on the designed game artifacts, student discourse, and their feedback on the efficacy of learning activities. This study highlights the benefits of co-design and learning games to uncover students' understanding and ability to apply AI concepts in game-based learning, their emergent perspectives of AI, and the prior knowledge that informs their game design choices. Our research uncovers students' AI misconceptions and informs the design of educational games and grade-level appropriate AI instruction.  more » « less
Award ID(s):
2049029 2048502
PAR ID:
10589513
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Association for Computing Machinery; CHI '25: Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
Date Published:
ISBN:
9798400713941
Page Range / eLocation ID:
1 to 17
Subject(s) / Keyword(s):
Co-design Game-based learning AI education Youth AI literacy
Format(s):
Medium: X
Location:
Yokohama Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Jeronen, Eila; Gordon, Neil; Reichgelt, Han (Ed.)
    The use of educational digital games as supplemental tools to course instruction materials has increased over the last several decades and especially since the COVID-19 pandemic. Though these types of instructional games have been employed in the majority of STEM disciplines, less is known about how diverse populations of students interpret and define the value of these games towards achieving academic and professional pursuits. A mixed-method sequential exploratory research design method that was framed on the Technology Acceptance Model, Game-Based Learning Theory and Expectancy Value Theory was used to examine how 201 students perceived the usefulness of an intuitive education game that was designed to teach engineering mechanics used in designing civil structures. We found that students had different expectations of educational digital games than games designed for entertainment used outside of classroom environments. Several students thought that the ability to design their own structures and observe structure failure in real-time was a valuable asset in understanding how truss structures responded to physical loading conditions. However, few students thought the educational game would be useful for exam (14/26) or job interview (19/26) preparation. Students associated more value with engineering games that illustrate course content and mathematical calculations used in STEM courses than those that do not include these elements. 
    more » « less
  2. This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs. 
    more » « less
  3. This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines the TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use the game and recommended inclusion of online engineering educational games as learning tools in classrooms, only a few indicated that they would use this tool to prepare for exams or technical job interviews. Some of the main themes identified in this study included unintended perpetuation of inequality through bias in favor of students who enjoyed competition-based learning and assessment of knowledge, and bias for students having prior experience in playing online games. Competition-based assessment related to presumed learning of course content enhanced student anxiety and feelings of intimidation and led to some students seeking to “game the game” versus learning the material, in efforts to achieve grade goals. Other students associated use of the game and the classroom weighted grading with intense stress that led them to prematurely stop the use of the engineering tool. Initial findings indicate that both game design and how technology is incorporated into the grading and testing of learning outcomes, influence student perceptions of the technology’s usefulness and ultimately the acceptance of the online game as a "learning tool." Results also point to the need to explore how the crediting and assessment of students’ performance and learning gains in these types of games could yield inequitable experiences in these types of courses. 
    more » « less
  4. The emergence of reinforcement-based AI for text generation (Chat-GPT) and image creation (Dall-E) has opened a wide range of possibilities for changing the game design and development process. While game development researchers have mostly focused on integrating these technologies to improve production workflow and demonstrate their use in the creation of content for entertainment purposes (intelligent NPCS), there is very little knowledge on how to integrate this technology into the design of educational games. In this paper, we present the results of integrating reinforcement AI (text and image generation) into educational gaming experiences by graduate students enrolled in a game-based learning course. The students were given a core set of requirements that enable the integration into their project with some flexibility on the desired educational outcome. The produced experiences were then evaluated by a small sample of experts (gaming and learning sciences) and their observations were compiled. Specifically, we describe the wide range of experiences developed by the students and the results of a qualitative study with a small group of experts that evaluated these experiences. Our results indicate that reinforcement AI-based integrations into educational game design and development helps enrich the user experience and has the potential to improve learning outcomes.   
    more » « less
  5. A fully-integrated mixed reality game system called multiphysics enriched mixed reality for integrated geotechnical education (MERGE) is developed to improve student education in the context of geotechnical engineering. This work allows students to learn the design of geothermal pile in a more inclusive way while playing a game and gain an "integrated geotechnical learning experience". Several mini games are designed for students to enhance the geotechnical knowledge. Players can earn points and update their appearance by playing these mini games, which stimulates their interests in geotechnical engineering. By providing students with visualization, collaboration, and simulation tools, we hope to promote the understanding of geotechnical experiments. Based on the laboratory results, numerical experiments are conducted to help students understand the geotechnical application. The leveraging mixed reality technology offers an opportunity for students to access advanced equipment in geotechnical experiments. The main contribution of this work is a discussion of the educational technology and processes behind implementing a mixed reality educational game. We provide developmental insights and educational background to inform researchers who seek to develop similar games. 
    more » « less