We present a new set of period–absolute magnitude–metallicity (PMZ) relations for single-mode RR Lyrae stars calibrated for the opticalGBP,V,G,GRP, near-infraredI,J,H, andKspassbands. We compiled a large dataset (over 100 objects) of fundamental and first-overtone RR Lyrae pulsators consisting of mean intensity magnitudes, reddenings, pulsation properties, iron abundances, and parallaxes measured by theGaiaastrometric satellite in its third data release. Our newly calibrated PMZ relations encapsulate the most up-to-date ingredients in terms of both data and methodology. They are intended to be used in conjunction with large photometric surveys targeting the Galactic bulge, including the Optical Gravitational Lensing Experiment (OGLE), the Vista Variables in the Vía Láctea Survey (VVV), and theGaiacatalog. In addition, our Bayesian probabilistic approach provides accurate uncertainty estimates of the predicted absolute magnitudes of individual RR Lyrae stars. Our derived PMZ relations provide consistent results when compared to benchmark distances to globular clusters NGC 6121 (also known as M 4), NGC 5139 (also known as omega Cen), and Large and Small Magellanic Clouds, which are stellar systems rich in RR Lyrae stars. Lastly, ourKs-band PMZ relations match well with the previously published PMZ relations based onGaiadata and accurately predict the distance toward the prototype of this class of variables, the eponymic RR Lyr itself.
more »
« less
Standard Galactic field RR Lyrae II: a Gaia DR2 calibration of the period–Wesenheit–metallicity relation
ABSTRACT RR Lyrae stars have long been popular standard candles, but significant advances in methodology and technology have been made in recent years to increase their precision as distance indicators. We present multiwavelength (optical UBVRcIc and Gaia G, BP, RP; near-infrared JHKs; mid-infrared [3.6], [4.5]) period–luminosity–metallicity (PLZ), period–Wesenheit–metallicity (PWZ) relations, calibrated using photometry obtained from the Carnegie RR Lyrae Program and parallaxes from the Gaia second data release for 55 Galactic field RR Lyrae stars. The metallicity slope, which has long been predicted by theoretical relations, can now be measured in all passbands. The scatter in the PLZ relations is on the order of 0.2 mag, and is still dominated by uncertainties in the parallaxes. As a consistency check of our PLZ relations, we also measure the distance modulus to the globular cluster M4, the Large Magellanic Cloud and the Small Magellanic Cloud, and our results are in excellent agreement with estimates from previous studies.
more »
« less
- Award ID(s):
- 1714534
- PAR ID:
- 10123295
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 490
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 4254-4270
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT Accurate metallicities of RR Lyrae are extremely important in constraining period–luminosity–metallicity (PLZ) relationships, particularly in the near-infrared. We analyse 69 high-resolution spectra of Galactic RR Lyrae stars from the Southern African Large Telescope. We measure metallicities of 58 of these RR Lyrae stars with typical uncertainties of 0.15 dex. All but one RR Lyrae in this sample has accurate ($$\sigma _{\varpi }\lesssim 10{{\ \rm per\ cent}}$$) parallax from Gaia. Combining these new high-resolution spectroscopic abundances with similar determinations from the literature for 93 stars, we present new PLZ relationships in WISE W1 and W2 magnitudes, and the Wesenheit magnitudes W(W1, V − W1) and W(W2, V − W2).more » « less
-
Abstract We present the firstgri-band period–luminosity (PL) and period–Wesenheit (PW) relations for the fundamental mode anomalous Cepheids. These PL and PW relations were derived from a combined sample of five anomalous Cepheids in globular cluster M92 and the Large Magellanic Cloud, both of which have distance accurate to ∼1% available from literature. Ourg-band PL relation is similar to theB-band PL relation as reported in previous study. We applied our PL and PW relations to anomalous Cepheids discovered in dwarf galaxy Crater II, and found a larger but consistent distance modulus than the recent measurements based on RR Lyrae. Our calibrations ofgri-band PL and PW relations, even though less precise due to small number of anomalous Cepheids, will be useful for distance measurements to dwarf galaxies.more » « less
-
We present a new set of tools to derive systemic velocities for single-mode RR Lyrae stars from visual and near-infrared spectra. We derived scaling relations and line-of-sight velocity templates using both APOGEE andGaiaspectroscopic products combined with photometricG-band amplitudes. We provide a means to estimate systemic velocities for the RR Lyrae subclasses, RRab and RRc. Our analysis indicates that the scaling relation between the photometric and line-of-sight velocity amplitudes is nonlinear, with a break in a linear relation occurring around ≈0.4 mag in both theV-band andG-band amplitudes. We did not observe such a break in the relation for the first-overtone pulsators. Using stellar pulsation models, we further confirm and examine the nonlinearity in scaling relation for the RRab subclass. We observed little to no variation with stellar parameters (mass, metallicity, and luminosity) in the scaling relation between the photometric and line-of-sight velocity amplitudes for fundamental-mode pulsators. We observed an offset in the scaling relation between the observations and stellar pulsation models, mainly in the low-amplitude RR Lyrae regime. This offset disappears when different sets of convective parameters are used. Thus, the Fourier amplitudes obtained from the photometry and line-of-sight velocity measurements can be utilized to constrain convective parameters of stellar pulsation models. The scaling relations and templates for APOGEE andGaiadata accurately predict systemic velocities compared to literature values. In addition, our tools derived from theGaiaspectra improve the precision of the derived systemic velocities by approximately 50 percent and provide a better description of the uncertainty distribution in comparison with previous studies. Our newly derived tools will be used for RR Lyrae variables observed toward the Galactic bulge.more » « less
-
ABSTRACT Using RR Lyrae stars in the Gaia Data Release 2 and Pan-STARRS1 we study the properties of the Pisces overdensity, a diffuse substructure in the outer halo of the Milky Way. We show that along the line of sight, Pisces appears as a broad and long plume of stars stretching from 40 to 110 kpc with a steep distance gradient. On the sky Pisces’s elongated shape is aligned with the Magellanic Stream. Using follow-up VLT FORS2 spectroscopy, we have measured the velocity distribution of the Pisces candidate member stars and have shown it to be as broad as that of the Galactic halo but offset to negative velocities. Using a suite of numerical simulations, we demonstrate that the structure has many properties in common with the predicted behaviour of the Magellanic wake, i.e. the Galactic halo overdensity induced by the infall of the Magellanic Clouds.more » « less
An official website of the United States government
