skip to main content


Title: Standard Galactic field RR Lyrae II: a Gaia DR2 calibration of the period–Wesenheit–metallicity relation
ABSTRACT

RR Lyrae stars have long been popular standard candles, but significant advances in methodology and technology have been made in recent years to increase their precision as distance indicators. We present multiwavelength (optical UBVRcIc and Gaia G, BP, RP; near-infrared JHKs; mid-infrared [3.6], [4.5]) period–luminosity–metallicity (PLZ), period–Wesenheit–metallicity (PWZ) relations, calibrated using photometry obtained from the Carnegie RR Lyrae Program and parallaxes from the Gaia second data release for 55 Galactic field RR Lyrae stars. The metallicity slope, which has long been predicted by theoretical relations, can now be measured in all passbands. The scatter in the PLZ relations is on the order of 0.2 mag, and is still dominated by uncertainties in the parallaxes. As a consistency check of our PLZ relations, we also measure the distance modulus to the globular cluster M4, the Large Magellanic Cloud and the Small Magellanic Cloud, and our results are in excellent agreement with estimates from previous studies.

 
more » « less
Award ID(s):
1714534
NSF-PAR ID:
10123295
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
490
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4254-4270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present new empirical infrared period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations for RR Lyae based on the latest Gaia Early Data Release 3 (EDR3) parallaxes. The relations are provided in the Wide-field Infrared Survey Explorer (WISE) W1 and W2 bands, as well as in the W(W1,V− W1) and W(W2,V− W2) Wesenheit magnitudes. The relations are calibrated using a very large sample of Galactic halo field RR Lyrae stars with homogeneous spectroscopic [Fe/H] abundances (over 1000 stars in the W1 band), covering a broad range of metallicities (−2.5 ≲ [Fe/H] ≲ 0.0). We test the performance of our PLZ and PWZ relations by determining the distance moduli of both galactic and extragalactic stellar associations: the Sculptor dwarf spheroidal galaxy in the Local Group (findingμ¯0=19.47±0.06), the Galactic globular clusters M4 (μ¯0=11.16±0.05), and the Reticulum globular cluster in the Large Magellanic Cloud (μ¯0=18.23±0.06). The distance moduli determined through all our relations are internally self-consistent (within ≲0.05 mag) but are systematically smaller (by ∼2–3σ) than previous literature measurements taken from a variety of methods/anchors. However, a comparison with similar recent RR Lyrae empirical relations anchored with EDR3 likewise shows, to varying extents, a systematically smaller distance modulus for PLZ/PWZ RR Lyrae relations.

     
    more » « less
  2. Abstract

    Based on time-series observations collected from the Zwicky Transient Facility (ZTF), we derived period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations for RR Lyrae located in globular clusters. We have applied various selection criteria to exclude RR Lyrae with problematic or spurious light curves. These selection criteria utilized information on the number of data points per light curve, amplitudes, colors, and residuals on the period–luminosity and/or period–Wesenheit relations. Due to blending, a number of RR Lyrae in globular clusters were found to be anomalously bright and have small amplitudes of their ZTF light curves. We used our final sample of ∼750 RR Lyrae in 46 globular clusters covering a wide metallicity range (−2.36 dex < [Fe/H] < −0.54 dex) to derive PLZ and PWZ relations in thegribands. In addition, we have also derived the period–color–metallicity and, for the first time, the period-Q-index-metallicity relations, where theQ-index is extinction-free by construction. We have compared our various relations to empirical and theoretical relations available in the literature and found a good agreement with most studies. Finally, we applied our derived PLZ relation to a dwarf galaxy, Crater II, and found that its true distance modulus should be larger than the most recent determination.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Accurate metallicities of RR Lyrae are extremely important in constraining period–luminosity–metallicity (PLZ) relationships, particularly in the near-infrared. We analyse 69 high-resolution spectra of Galactic RR Lyrae stars from the Southern African Large Telescope. We measure metallicities of 58 of these RR Lyrae stars with typical uncertainties of 0.15 dex. All but one RR Lyrae in this sample has accurate ($\sigma _{\varpi }\lesssim 10{{\ \rm per\ cent}}$) parallax from Gaia. Combining these new high-resolution spectroscopic abundances with similar determinations from the literature for 93 stars, we present new PLZ relationships in WISE W1 and W2 magnitudes, and the Wesenheit magnitudes W(W1, V − W1) and W(W2, V − W2). 
    more » « less
  4. ABSTRACT

    We investigate the properties of the mixed-mode (RRd) RR Lyrae (RRL) variables in the Fornax dwarf spheroidal (dSph) galaxy by using B- and V-band time series collected over 24 yr. We compare the properties of the RRds in Fornax with those in the Magellanic Clouds and in nearby dSphs, with special focus on Sculptor. We found that the ratio of RRds over the total number of RRLs decreases with metallicity. Typically, dSphs have very few RRds with 0.49≲ P0 ≲0.53 d, but Fornax fills this period gap in the Petersen diagram (ratio between first overtone over fundamental period versus fundamental period). We also found that the distribution in the Petersen diagram of Fornax RRds is similar to Small Magellanic Cloud (SMC) RRds, thus suggesting that their old stars have a similar metallicity distribution. We introduce the Period–Amplitude RatioS diagram, a new pulsation diagnostics independent of distance and reddening. We found that Large Magellanic Cloud (LMC) RRds in this plane are distributed along a short- and a long-period sequence that we identified as the metal-rich and the metal-poor component. These two groups are also clearly separated in the Petersen and Bailey (luminosity amplitude versus logarithmic period) diagrams. This circumstantial evidence indicates that the two groups have different evolutionary properties. All the pulsation diagnostics adopted in this investigation suggest that old stellar populations in Fornax and Sculptor dSphs underwent different chemical enrichment histories. Fornax RRds are similar to SMC RRds, while Sculptor RRds are more similar to the metal-rich component of the LMC RRds.

     
    more » « less
  5. We provide homogeneous optical ( U B V R I ) and near-infrared (NIR, J H K ) time series photometry for 254 cluster ( ω Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 ω Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag ( σ = 0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also ∼0.01 mag ( σ = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli μ = 18.47 ± 0.10 (rand.) ± 0.03 (syst.) mag ( J ) and 18.49 ± 0.09 ± 0.05 mag ( K ). We also used literature optical and mid-infrared data and we found a mean μ of 18.47 ± 0.02 ± 0.06 mag, suggesting that Reticulum is ∼1 kpc closer than the LMC. 
    more » « less