skip to main content

Title: The Pisces Plume and the Magellanic wake
ABSTRACT Using RR Lyrae stars in the Gaia Data Release 2 and Pan-STARRS1 we study the properties of the Pisces overdensity, a diffuse substructure in the outer halo of the Milky Way. We show that along the line of sight, Pisces appears as a broad and long plume of stars stretching from 40 to 110 kpc with a steep distance gradient. On the sky Pisces’s elongated shape is aligned with the Magellanic Stream. Using follow-up VLT FORS2 spectroscopy, we have measured the velocity distribution of the Pisces candidate member stars and have shown it to be as broad as that of the Galactic halo but offset to negative velocities. Using a suite of numerical simulations, we demonstrate that the structure has many properties in common with the predicted behaviour of the Magellanic wake, i.e. the Galactic halo overdensity induced by the infall of the Magellanic Clouds.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1813881
Publication Date:
NSF-PAR ID:
10162384
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
488
Issue:
1
Page Range or eLocation-ID:
L47 to L52
ISSN:
1745-3925
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present new empirical infrared period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations for RR Lyae based on the latest Gaia Early Data Release 3 (EDR3) parallaxes. The relations are provided in the Wide-field Infrared Survey Explorer (WISE) W1 and W2 bands, as well as in the W(W1,V− W1) and W(W2,V− W2) Wesenheit magnitudes. The relations are calibrated using a very large sample of Galactic halo field RR Lyrae stars with homogeneous spectroscopic [Fe/H] abundances (over 1000 stars in the W1 band), covering a broad range of metallicities (−2.5 ≲ [Fe/H] ≲ 0.0). We test the performance of our PLZ and PWZ relations by determining the distance moduli of both galactic and extragalactic stellar associations: the Sculptor dwarf spheroidal galaxy in the Local Group (findingμ¯0=19.47±0.06), the Galactic globular clusters M4 (μ¯0=11.16±0.05), and the Reticulum globular cluster in the Large Magellanic Cloud (μ¯0=18.23±0.06). The distance moduli determined through all our relations are internally self-consistent (within ≲0.05 mag) but are systematically smaller (by ∼2–3σ) than previous literature measurements taken from a variety of methods/anchors. However, a comparison with similar recent RR Lyrae empirical relations anchored with EDR3 likewise shows, to varyingmore »extents, a systematically smaller distance modulus for PLZ/PWZ RR Lyrae relations.

    « less
  2. null (Ed.)
    ABSTRACT We investigate thin and thick stellar disc formation in Milky Way-mass galaxies using 12 FIRE-2 cosmological zoom-in simulations. All simulated galaxies experience an early period of bursty star formation that transitions to a late-time steady phase of near-constant star formation. Stars formed during the late-time steady phase have more circular orbits and thin-disc-like morphology at z = 0, while stars born during the bursty phase have more radial orbits and thick-disc structure. The median age of thick-disc stars at z = 0 correlates strongly with this transition time. We also find that galaxies with an earlier transition from bursty to steady star formation have a higher thin-disc fractions at z = 0. Three of our systems have minor mergers with Large Magellanic Cloud-size satellites during the thin-disc phase. These mergers trigger short starbursts but do not destroy the thin disc nor alter broad trends between the star formation transition time and thin/thick-disc properties. If our simulations are representative of the Universe, then stellar archaeological studies of the Milky Way (or M31) provide a window into past star formation modes in the Galaxy. Current age estimates of the Galactic thick disc would suggest that the Milky Way transitioned from bursty to steady phasemore »∼6.5 Gyr ago; prior to that time the Milky Way likely lacked a recognizable thin disc.« less
  3. ABSTRACT

    We report the spectroscopic analysis of 20 halo ab-type RR Lyrae stars with heliocentric distances between 15 and 165 kpc, conducted using medium-resolution spectra from the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We obtain the systemic line-of-sight velocities of our targets with typical uncertainties of 5–10 km s−1 and compute orbital parameters for a subsample out to 50 kpc from the Galactic centre, including proper motion data from Gaia DR3. The orientation of our stars’ orbits, determined for an isolated Milky Way and for a model perturbed by the Large Magellanic Cloud, appears to suggest an accreted origin for at least half of the sample. In addition, we derive atmospheric parameters and chemical abundance ratios for seven stars beyond 20 kpc. The derived α-abundances of five of these stars follow a Milky Way halo-like trend, while the other two display an underabundance of α-elements for their [Fe/H], indicating an association with accretion events. Furthermore, based on the [Sr/Ba] ratio, we can speculate about the conditions for the formation of a potential chemically peculiar carbon-enhanced metal-poor (CEMP) RR Lyrae star. By analysing the stars’ orbital parameters and abundance ratios, we find hints of association of two of our stars with two massive satellites, namely themore »Large Magellanic Cloud and Sagittarius. Overall, our results are in line with the suggestion that the accretion of sub-haloes largely contributes to the outer halo stellar populations.

    « less
  4. ABSTRACT

    We present radial velocities for five member stars of the recently discovered young (age ≃ 100−150 Myr) stellar system Price-Whelan 1 (PW 1), which is located far away in the Galactic Halo (D≃ 29 kpc, Z≃ 15 kpc), and that is probably associated with the leading arm (LA) of the Magellanic Stream. We measure the systemic radial velocity of PW 1, Vr = 275 ± 10 km s−1, significantly larger than the velocity of the LA gas in the same direction. We re-discuss the main properties and the origin of this system in the light of these new observations, computing the orbit of the system and comparing its velocity with that of the H i in its surroundings. We show that the bulk of the gas at the velocity of the stars is more than 10 deg (5 kpc) away from PW 1 and the velocity difference between the gas and the stars becomes larger as gas closer to the stars is considered. We discuss the possibilities that (1) the parent gas cloud was dissolved by the interaction with the Galactic gas, and (2) that the parent cloud is the high-velocity cloud (HVC) 287.5+22.5 + 240, lagging behind the stellar system by ≃ 25 km s−1 and ≃10 deg ≃ 5 kpc. This HVC, which is part of the LA, hasmore »metallicity similar to PW 1, displays a strong magnetic field that should help to stabilize the cloud against ram pressure, and shows traces of molecular hydrogen. We also show that the system is constituted of three distinct pieces that do not differ only by position in the sky but also by stellar content.

    « less
  5. ABSTRACT

    A variety of observational campaigns seek to test dark matter models by measuring dark matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within Lambda cold dark matter, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to $10^{6}\, \text{M}_\odot$, distances ≲50 kpc of the galactic centre, across z = 0 − 1 (tlookback = 0–8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytical models. A typical MW-mass halo contains ≈16 subhaloes $\gt 10^{7}\, \text{M}_\odot$ (≈1 subhalo $\gt 10^{8}\, \text{M}_\odot$) within 50 kpc at z ≈ 0. We compare our results with dark matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2–10×, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ≈10× higher at z = 1 than at z ≈ 0. Subhaloes have nearly isotropic orbital velocity distributions at z ≈more »0. Across our simulations, we also identified 4 analogues of Large Magellanic Cloud satellite passages; these analogues enhance subhalo counts by 1.4–2.1 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ∼5 per Gyr for a stream like GD-1, sufficient to make subhalo–stream interactions a promising method of measuring dark subhaloes.

    « less