The abundant availability of crop waste and forestry residues in Texas provides great potential for producing renewable diesel in the local towns of Texas. This study aims to evaluate the environmental impacts of renewable diesel use in Texas transportation and the potential of renewable diesel production in Texas. The GREET model was used to customize the life cycle pathway of renewable diesel and evaluate its environmental impacts. The models of renewable diesel produced from forestry residue and corn stover were built to calculate life cycle gas emissions of combination short-haul heavy-duty trucks fueled with renewable diesel. Life cycle GHG emissions of renewable diesel are much lower than those of low-sulfur diesel. However, with respect to renewable diesel derived from corn stover, life cycle PM10 and PM2.5 emissions were almost double those of low-sulfur diesel in 2024, and both emissions will be reduced by 37–38% in 2035. The life cycle emission trends of SOx, black carbon, and primary organic carbon are very similar to those of PM10 and PM2.5. The total cost of ownership (TCO) of heavy-duty trucks using renewable diesel produced from forestry residues or corn stover would be 10.3–14.8% higher than those consuming regular low-sulfur diesel in Texas.
more »
« less
Life Cycle Impacts and Techno-economic Implications of Flash Hydrolysis in Algae Processing
Generation of coproducts from nutrients is purported to improve the sustainability of algae-derived transportation fuels by minimizing life cycle impacts and improving economic sustainability. Although algae cultivation produces lipids that is upgraded to drop-in transportation fuel products, life cycle assessment and techno-economic analysis have shown that without coproducts, energy/economic returns are diminishing regardless of processing methods. This study utilizes a combined flash hydrolysis (FH), hydrothermal liquefaction (HTL), and coproduct conversion technology (atmospheric precipitation/AP; hydrothermal mineralization/HTM) to conserve the most recyclable nutrients for coproduct marketability. Six biofuel pathways were developed and compared in terms of “well-to-pump” energy, life cycle greenhouse gas (LC-GHG) emissions, and economic profitability: renewable diesel II (RDII), renewable gasoline (RG), and hydroprocessed renewable jet (HRJ) fuel, each were modeled for AP and HTM coproduct conversion. A functional unit of 1 MJ usable energy was employed. RG showed a promising energy-return-on-investment (EROI) due to multiple coproducts. All models demonstrated favorable EROI (EROI > 1). LC-GHG emissions tie in with EROI such that RG produced the least emissions. HRJ-HTM was determined to be the most profitable model with a profitability index (PI) of 0.75. Sensitivity analyses revealed that dewatering affects EROI and PI significantly. To achieve break-even, gasoline must sell at $4.10/gal, diesel at $5.64/gal, and jet fuel at $3.43/gal.
more »
« less
- Award ID(s):
- 1640593
- PAR ID:
- 10123370
- Date Published:
- Journal Name:
- ACS sustainable chemistry & engineering
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2168-0485
- Page Range / eLocation ID:
- 3580–3588
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5μm) concentrations by up to 17.5 and 13.7µg m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, we estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.more » « less
-
Agricultural management practices improve crop yields to satisfy food demand of the growing population. However, these activities can have negative consequences, including the release of greenhouse gas (GHG) emissions that contribute to global climate change. To mitigate this global environmental problem, the management practices that contribute the most to system GHG emissions should be identified and targeted to mitigate emissions. Accordingly, we estimated the cradle-to-product GHG emissions of irrigated corn production under various farmer-selected scenarios at an experimental testing field in the semi-arid U.S. Great Plains. We applied a carbon footprint approach to quantify life cycle GHG emissions associated with pre-field (e.g., energy production, fertilizer production) and in-field (e.g., groundwater pumping, fertilizer application) activities within fourteen scenarios in the 2020 Oklahoma Testing Ag Performance Solutions (TAPS) sprinkler corn competition. We determined that 63% of the total GHG emission from corn production was associated with in- field activities and that agricultural soil emissions were the overall driving factor. Soil biochemical processes within agricultural soils were expected to contribute an average of 89 ± 18 g CO2-eq kg− 1 corn of the total 271 ± 46 g CO2-eq kg− 1 corn estimated from these systems. On-site natural gas combustion for agricultural groundwater pumping, pre-field fertilizer production, and pre-field energy production for groundwater pumping were the next most influential parameters on total GHG emissions. Diesel fuel, seed, and herbicide production had insignificant contributions to total GHG emissions from corn production. The model was most sensitive to the modeled GHG emissions from agricultural soil, which had significant uncertainty in the emission factor. Therefore, future efforts should target field measurements to better predict the contribution of direct soil emissions to total GHG emissions, particularly under different managements. In addition, identifying the optimal application rate of irrigation water and fertilizer will help to decrease GHG emissions from groundwater irrigated crops.more » « less
-
Communities are considering local food production in response to the pressing need to reduce food system greenhouse gas (GHG) emissions. However, local food systems can vary considerably in design and operation, including controlled environment agriculture (CEA), which refers to agricultural production that takes place within an enclosed space where environmental conditions, such as temperature, humidity, and light, are precisely controlled. Such systems require a considerable amount of energy and thus emissions; therefore, this study seeks to quantify these environmental impacts to determine how local CEA systems compare to alternative systems. For this study’s methods, we apply life cycle assessment methodology to quantify the cradle-to-storeshelf GHG emissions and water consumption of four lettuce production systems: local indoor plant factory, local greenhouse, local seasonal soil, and conventional centralized production in California with transportation. Using geographically specific inputs, the study estimates the environmental impact of the different production systems including geospatially resolved growth modeling, emissions intensity, and transportation distances. The results include the major finding that baseline CEA systems always have higher GHG emissions (2.6–7.7 kg CO2e kg−1) than centralized production (0.3–1.0 kg CO2e kg−1), though water consumption is significantly less owing to hydroponic efficiency. In contrast, local seasonal soil production generally has a lower GHG impact than centralized production, though water consumption varies by crop yield and local precipitation during growing seasons. Scenario analyses indicate CEA facilities would need to electrify all systems and utilize low-carbon electricity sources to have equivalent or lower GHG impacts than California centralized production plus transportation. We conclude that these results can inform consumers and policy makers that local seasonal production and conventional supply chains are more sustainable than local CEA production in near-term food-energy-water sustainability nexus decision making.more » « less
-
With increasing focus on equitable and just energy transition, it is critical to understand the trade-offs of different decarbonization outcomes across economic, environmental, and social sustainability criteria. In this analysis, we use a multi-criteria decision analysis to quantify sustainability outcomes across 32 decarbonization outcomes in 2050 in the U.S. The economic sustainability criteria we use are system cost, national average retail rate, and electricity system employment. The environmental sustainability criteria we use are life cycle greenhouse gas emissions, life cycle water depletion, life cycle land transformation, and air pollution fatalities. The social sustainability (distributional impacts) criteria we use are retail rate equality across states, electricity employment equality across low-income households, and air pollution disparities across census tracts. We evaluate performance across these criteria under eleven different stakeholder preference scenarios. We find that decarbonization policies with indefinitely extended tax credits have the highest sustainability score under equal criteria weighting, with greater investments in renewable energy technologies, and result in better environmental, system cost, job, and air pollution disparities compared to mid-case scenarios, that only include current policies and CO2 reduction targets. We also see that our multi-criteria decision analysis identifies decarbonization outcomes that would not have been identified as optimal under a single objective, which highlights the importance of trade-off analyses to understand decarbonization outcomes more holistically.more » « less
An official website of the United States government

