Surface-enhanced spin current to charge current conversion efficiency in CH 3 NH 3 PbBr 3 -based devices
- PAR ID:
- 10123497
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 151
- Issue:
- 17
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- Article No. 174709
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The understanding of domain dynamics in ferroelectric materials is crucial for optimizing their performance in piezoelectric and electro‐optic applications. Although previous studies have focused on static domain structures and macroscopic characteristics, the time‐resolved approach of domains remains largely unexplored. In this study, we compare the dynamic responses of direct current (DC) and alternating current (AC) poled [001]‐oriented rhombohedral Pb(Mg1/3Nb2/3)O3–PbTiO3(PMN–PT) single crystals using X‐ray photon correlation spectroscopy (XPCS) during the application of external electric fields. Our results demonstrate that the AC‐poled sample exhibit enhanced reconfiguration of domain variants in response to driving fields compared to the DC‐poled counterpart, as evidenced by accelerated correlation decay and faster relaxation time. This phenomenon is attributed to enhanced reversible domain wall motion achieved through AC poling, which facilitates field‐induced domain realignment. These findings provide insight into the relationship between dynamics and macroscopic properties in relaxor‐PT single crystals for high‐performance applications.more » « less
-
We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is = (4.9 ± 0.9) × 106 , and a lower bound for the magnitude of the spin Nernst ratio is −0.61 ± 0.11. The spin Nernst ratio for Bi2Se3is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy.more » « less
An official website of the United States government
