skip to main content


Search for: All records

Award ID contains: 1933297

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent successful integration of semiconductors into spintronic THz emitters has demonstrated a new pathway of control over terahertz (THz) radiation through ultrafast demagnetization dynamics. Here, the spintronic THz emission from different ultrawide bandgap (UWBG) semiconductors interfaced with ferromagnets is studied. The authors show that the Schottky barrier in the UWBG semiconductor AlN acts as a spin filter that increases the polarization of the spin current injected from the ferromagnet. Furthermore, the authors show that the two‐dimensional electron gas at the interface between Al0.25Ga0.75N and GaN enhances the magnitude of the emitted radiation due to the high spin‐to‐charge conversion efficiency induced by the Rashba effect that results in a hallmark asymmetry in emission amplitude. The results provide a framework for future engineering of semiconducting/ferromagnet heterostructures for ultrafast communications technologies beyond 5G.

     
    more » « less
  2. Abstract

    Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation. The generated THz radiation exhibits an asymmetric intensity toward forward and backward emission direction whose directionality can be mutually controlled by the direction of applied magnetic field and linear polarization of the laser pulse. Our work demonstrates the capability for the coherent control of THz emission from 2D-HMHs, enabling their promising applications on the ultrafast timescale as solution-processed material candidates for future THz emitters.

     
    more » « less
  3. Abstract

    The emergence of hybrid metal halides (HMH) materials, such as the archetypal CH3NH3PbBr3, provides an appealing material platform for solution-processed spintronic applications due to properties such as unprecedented large Rashba spin-splitting states and highly efficient spin-to-charge (StC) conversion efficiencies. Here we report the first study of StC conversion and spin relaxation time in MAPbBr3single crystals at room temperature using a spin pumping approach. Microwave frequency and power dependence of StC responses are both consistent with the spin pumping model, from which an inverse Rashba–Edelstein effect coherence length of up to ∼30 picometer is obtained, highlighting a good StC conversion efficiency. The magnetic field angular dependence of StC is investigated and can be well-explained by the spin precession model under oblique magnetic field. A long spin relaxation time of up to ∼190 picoseconds is obtained, which can be attributed to the surface Rashba state formed at the MAPbBr3interface. Our oblique Hanle effect by FMR-driven spin pumping technique provides a reliable and sensitive tool for measuring the spin relaxation time in various solution processed HMH single crystals.

     
    more » « less