null
(Ed.)
This article, for the first time, demonstrates Cross-device Deep Learning Side-Channel Attack (X-DeepSCA), achieving an accuracy of > 99.9%, even in presence of significantly higher inter-device variations compared to the inter-key variations. Augmenting traces captured from multiple devices for training and with proper choice of hyper-parameters, the proposed 256-class Deep Neural Network (DNN) learns accurately from the power side-channel leakage of an AES-128 target encryption engine, and an N-trace (N ≤ 10) X-DeepSCA attack breaks different target devices within seconds compared to a few minutes for a correlational power analysis (CPA) attack, thereby increasing the threat surface for embedded devices significantly. Even for low SNR scenarios, the proposed X-DeepSCA attack achieves ∼ 10× lower minimum traces to disclosure (MTD) compared to a traditional CPA.
more »
« less
An official website of the United States government

