skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Factors Contributing to the Problem-Solving Heuristics of Civil Engineering Students
Problem solvers vary their approaches to solving problems depending on the context of the problem, the requirements of the solution, and the ways in which the problems and material to solve the problem are represented, or representations. Representations take many forms (i.e. tables, graphs, figures, images, formulas, visualizations, and other similar contexts) and are used to communicate information to a problem solver. Engagement with certain representations varies between problem solvers and can influence design and solution quality. A problem solver’s evaluation of representations and the reasons for using a representation can be considered factors in problem-solving heuristics. These factors describe unique problem-solving behaviors that can help understand problem solvers. These behaviors may lead to important relationships between a problem solver’s decisions and their ability to solve a problem and overall quality of the solution. Therefore, we pose the following research question: How do factors of problem-solving heuristics describe the unique behaviors of engineering students as they solve multiple problems? To answer this question, we interviewed 16 undergraduate engineering students studying civil engineering. The interviews consisted of a problem-solving portion that was followed immediately by a semi-structured retrospective interview with probing questions created based on the real time monitoring of the problem-solving interview using eye tracking techniques. The problem-solving portion consisted of solving three problems related to the concept of headloss in fluid flow through pipes. Each of the three problems included the same four representations that were used by the students as approaches to solving the problem. The representations are common ways to present the concept of headloss in pipe flow and included two formulas, a set of tables, and a graph. This paper presents a set of common reasons for why decisions were made during the problem-solving process that help to understand more about the problem-solving behavior of engineering students.  more » « less
Award ID(s):
1463769
PAR ID:
10124331
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering practitioners solve problems in various ways; it is plausible that they often rely on graphs, figures, formulas and other representations to reach a solution. How and why engineering practitioners use representations to solve problems can characterize certain problem-solving behaviors, which can be used to determine particular types of problem solvers. The purpose of this research was to determine the relationship between time spent referring to various representations and the justifications for the decisions made during the problem-solving process of engineering practitioners. A persona-based approach was used to characterize the problem-solving behavior of 16 engineering practitioners. Utilizing eye tracking and retrospective interview techniques, the problem-solving process of engineering practitioners was explored. Three unique problem-solver personas were developed that describe the behaviors of engineering practitioners; a committed problem solver, an evaluative problem, and an indecisive problem solver. The three personas suggest that there are different types of engineering practitioner problem solvers. This study contributes to engineering education research by expanding on problem-solving research to look for reasons why decisions are made during the problem-solving process. Understanding more about how the differences between problem solvers affect the way they approach a problem and engage with the material presents a more holistic view of the problem-solving process of engineering practitioners. 
    more » « less
  2. Workplace engineering problems are different from the problems that undergraduate engineering students typically encounter in most classroom settings. Students are most commonly given well-structured problems which have clear solution paths along with well-defined constraints and goals. This paper reports on research that examines how undergraduate engineering students perceived solving an ill-structured problem. Eighteen undergraduate civil engineering students were asked to solve an ill-structured engineering problem, and were interviewed after they completed solving the problem. This qualitative study is guided by the following research question: What factors do students perceive to influence their solving of an ill-structured civil engineering problem? Students’ responses to seven follow-up interview questions were transcribed and reviewed by research team members, which were used to develop codes and themes associated with these responses. Students’ transcripts were then coded following the developed codes. The analysis of data revealed that students were generally aware of the main positives and negatives of their proposed solutions to the ill-structured problem and reported that their creativity influenced their solutions and problem solving processes. Student responses also indicated that specific life events such as classes that they had taken, personal experiences, and exposure to other ill-structured problems during an internship helped them develop their proposed solution. Given students’ responses and overall findings, this supports creating learning environments for engineering students where they can support increasing their creativity and be more exposed to complex engineering problems. 
    more » « less
  3. I initially became interested in knowledge transfer after observing my students’ general inability to use mathematical knowledge and skills in an applied (engineering) context. My personal belief was that the students should have an understanding of basic basic mathematical concepts, like integration, and be able to use them correctly to solve problems. Clearly, something was missing in my students’ understanding or perhaps memory that was causing them problems in this regard. In my initial work on knowledge transfer, I found that many students did not even recognize the need to transfer knowledge and for example, to integrate to solve a problem framed in an engineering context unless they were prompted to do so. Concerned by this troubling observation, coupled with my belief that engineers should be able to both understand and apply mathematical concepts in their coursework and careers, I determined to investigate the cause of the problem and, if possible, evidence a potential solution to help students transfer mathematical knowledge into an applied (engineering) context. In this study, I examine an expert (faculty) approach to problem solving using a semi-structured, think-aloud interview protocol coupled with a thorough thematic analysis for phenomenological themes. This analysis, grounded in an existing framework of knowledge transfer, provides a rich, thick description of the knowledge transfer, and problem solving process employed by the faculty expert and serves as a useful comparative case against which student approaches to problem solving and knowledge transfer can be judged. Important findings of this study relate to the extensive use of reflective and evaluative practices employed by the faculty member at all stages of the problem solving process. These internal checks and balances are rarely observed among novice problem solvers and perhaps represent behaviors that we, as educators, should seek to impart in our students if they are to become more adaptable engineers who are better equipped to transfer their knowledge and skills across a range of contexts. 
    more » « less
  4. Clarke-Midura, J; Kollar, I; Gu, X; D’Angelo, C (Ed.)
    In collaborative problem-solving (CPS), students work together to solve problems using their collective knowledge and social interactions to understand the problem and progress towards a solution. This study focuses on how students engage in CPS while working in pairs in a STEM+C (Science, Technology, Engineering, Mathematics, and Computing) environment that involves open-ended computational modeling tasks. Specifically, we study how groups with different prior knowledge in physics and computing concepts differ in their information pooling and consensus-building behaviors. In addition, we examine how these differences impact the development of their shared understanding and learning. Our study consisted of a high school kinematics curriculum with 1D and 2D modeling tasks. Using an exploratory approach, we performed in-depth case studies to analyze the behaviors of groups with different prior knowledge distributions across these tasks. We identify effective information pooling and consensus-building behaviors in addition to difficulties students faced when developing a shared understanding of physics and computing concepts. 
    more » « less
  5. Creativity plays an important role in engineering problem solving, particularly when solving an ill-structured problem, and has been a topic of increasing research interest in recent years. Prior research on creativity has been conducted in problem solving settings, predominantly focusing on undergraduate engineering students, including how faculty can foster creativity in engineering students, how engineering faculty perceive their students’ creativity, and how to measure it. However, more work is needed to examine engineering faculty and practitioner perspectives on the role of creativity when they solve an engineering problem themselves. Since engineering students learn problem solving, at least initially, mainly from their professors, it is essential to understand how faculty perceive their own creativity in problem solving. Similarly, given that practitioners solve ill-structured engineering problems on a regular basis in the workplace and that most of the students go on to work in the engineering industry when they graduate and ultimately become practitioners, it is also important to explore practitioner perspectives on creativity in problem solving settings. As part of an ongoing NSF-funded study, this paper investigates how engineering faculty’s and practitioners’ creativity influences their problem solving processes, how their perspectives on creativity in a problem solving environment differ, and what factors impact their creativity. Five tenure-track faculty in civil engineering and five practitioners were interviewed after they solved an ill-structured engineering problem. Participants’ responses were transcribed and coded using initial coding. This paper discusses their responses to semi-structured interview questions. The findings suggest that faculty and practitioners feel more creative when they are familiar with the subject area of a problem. If they are aware of a particular solution that has been developed and used before or have access to resources to look them up, they may not necessarily embrace creativity. The findings indicated differences not only across faculty and practitioners but also within the faculty and practitioner participants. Similarities and differences between faculty and practitioners in creative problem solving and the themes emerged are discussed and recommendations for educators are provided. 
    more » « less