skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: APPLES: Scalable Distance-Based Phylogenetic Placement with or without Alignments
Abstract Placing a new species on an existing phylogeny has increasing relevance to several applications. Placement can be used to update phylogenies in a scalable fashion and can help identify unknown query samples using (meta-)barcoding, skimming, or metagenomic data. Maximum likelihood (ML) methods of phylogenetic placement exist, but these methods are not scalable to reference trees with many thousands of leaves, limiting their ability to enjoy benefits of dense taxon sampling in modern reference libraries. They also rely on assembled sequences for the reference set and aligned sequences for the query. Thus, ML methods cannot analyze data sets where the reference consists of unassembled reads, a scenario relevant to emerging applications of genome skimming for sample identification. We introduce APPLES, a distance-based method for phylogenetic placement. Compared to ML, APPLES is an order of magnitude faster and more memory efficient, and unlike ML, it is able to place on large backbone trees (tested for up to 200,000 leaves). We show that using dense references improves accuracy substantially so that APPLES on dense trees is more accurate than ML on sparser trees, where it can run. Finally, APPLES can accurately identify samples without assembled reference or aligned queries using kmer-based distances, a scenario that ML cannot handle. APPLES is available publically at github.com/balabanmetin/apples.  more » « less
Award ID(s):
1815485
PAR ID:
10124559
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Systematic Biology
ISSN:
1063-5157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without prespecified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multilocus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data. [Deep learning; gene tree discordance; metagenomics; microbiome analyses; neural networks; phylogenetic placement.] 
    more » « less
  2. Birol, Inanc (Ed.)
    Abstract Motivation Linking microbial community members to their ecological functions is a central goal of environmental microbiology. When assigned taxonomy, amplicon sequences of metabolic marker genes can suggest such links, thereby offering an overview of the phylogenetic structure underpinning particular ecosystem functions. However, inferring microbial taxonomy from metabolic marker gene sequences remains a challenge, particularly for the frequently sequenced nitrogen fixation marker gene, nitrogenase reductase (nifH). Horizontal gene transfer in recent nifH evolutionary history can confound taxonomic inferences drawn from the pairwise identity methods used in existing software. Other methods for inferring taxonomy are not standardized and require manual inspection that is difficult to scale. Results We present Phylogenetic Placement for Inferring Taxonomy (PPIT), an R package that infers microbial taxonomy from nifH amplicons using both phylogenetic and sequence identity approaches. After users place query sequences on a reference nifH gene tree provided by PPIT (n = 6317 full-length nifH sequences), PPIT searches the phylogenetic neighborhood of each query sequence and attempts to infer microbial taxonomy. An inference is drawn only if references in the phylogenetic neighborhood are: (1) taxonomically consistent and (2) share sufficient pairwise identity with the query, thereby avoiding erroneous inferences due to known horizontal gene transfer events. We find that PPIT returns a higher proportion of correct taxonomic inferences than BLAST-based approaches at the cost of fewer total inferences. We demonstrate PPIT on deep-sea sediment and find that Deltaproteobacteria are the most abundant potential diazotrophs. Using this dataset we show that emending PPIT inferences based on visual inspection of query sequence placement can achieve taxonomic inferences for nearly all sequences in a query set. We additionally discuss how users can apply PPIT to the analysis of other marker genes. Availability PPIT is freely available to non-commercial users at https://github.com/bkapili/ppit. Installation includes a vignette that demonstrates package use and reproduces the nifH amplicon analysis discussed here. The raw nifH amplicon sequence data have been deposited in the GenBank, EMBL, and DDBJ databases under BioProject number PRJEB37167. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract Phylogenomic analyses have increasingly adopted species tree reconstruction using methods that account for gene tree discordance using pipelines that require both human effort and computational resources. As the number of available genomes continues to increase, a new problem is facing researchers. Once more species become available, they have to repeat the whole process from the beginning because updating species trees is currently not possible. However, the de novo inference can be prohibitively costly in human effort or machine time. In this article, we introduce INSTRAL, a method that extends ASTRAL to enable phylogenetic placement. INSTRAL is designed to place a new species on an existing species tree after sequences from the new species have already been added to gene trees; thus, INSTRAL is complementary to existing placement methods that update gene trees. [ASTRAL; ILS; phylogenetic placement; species tree reconstruction.] 
    more » « less
  4. Abstract Motivation Consider a simple computational problem. The inputs are (i) the set of mixed reads generated from a sample that combines two organisms and (ii) separate sets of reads for several reference genomes of known origins. The goal is to find the two organisms that constitute the mixed sample. When constituents are absent from the reference set, we seek to phylogenetically position them with respect to the underlying tree of the reference species. This simple yet fundamental problem (which we call phylogenetic double-placement) has enjoyed surprisingly little attention in the literature. As genome skimming (low-pass sequencing of genomes at low coverage, precluding assembly) becomes more prevalent, this problem finds wide-ranging applications in areas as varied as biodiversity research, food production and provenance, and evolutionary reconstruction. Results We introduce a model that relates distances between a mixed sample and reference species to the distances between constituents and reference species. Our model is based on Jaccard indices computed between each sample represented as k-mer sets. The model, built on several assumptions and approximations, allows us to formalize the phylogenetic double-placement problem as a non-convex optimization problem that decomposes mixture distances and performs phylogenetic placement simultaneously. Using a variety of techniques, we are able to solve this optimization problem numerically. We test the resulting method, called MIxed Sample Analysis tool (MISA), on a varied set of simulated and biological datasets. Despite all the assumptions used, the method performs remarkably well in practice. Availability and implementation The software and data are available at https://github.com/balabanmetin/misa and https://github.com/balabanmetin/misa-data. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Phylogenetic placement, used widely in ecological analyses, seeks to add a new species to an existing tree. A deep learning approach was previously proposed to estimate the distance between query and backbone species by building a map from gene sequences to a high-dimensional space that preserves species tree distances. They then use a distance-based placement method to place the queries on that species tree. In this paper, we examine the appropriate geometry for faithfully representing tree distances while embedding gene sequences. Theory predicts that hyperbolic spaces should provide a drastic reduction in distance distortion compared to the conventional Euclidean space. Nevertheless, hyperbolic embedding imposes its own unique challenges related to arithmetic operations, exponentially-growing functions, and limited bit precision, and we address these challenges. Our results confirm that hyperbolic embeddings have substantially lower distance errors than Euclidean space. However, these better-estimated distances do not always lead to better phylogenetic placement. We then show that the deep learning framework can be used not just to place on a backbone tree but to update it to obtain a fully resolved tree. With our hyperbolic embedding framework, species trees can be updated remarkably accurately with only a handful of genes. 
    more » « less