skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenetic double placement of mixed samples
Abstract Motivation Consider a simple computational problem. The inputs are (i) the set of mixed reads generated from a sample that combines two organisms and (ii) separate sets of reads for several reference genomes of known origins. The goal is to find the two organisms that constitute the mixed sample. When constituents are absent from the reference set, we seek to phylogenetically position them with respect to the underlying tree of the reference species. This simple yet fundamental problem (which we call phylogenetic double-placement) has enjoyed surprisingly little attention in the literature. As genome skimming (low-pass sequencing of genomes at low coverage, precluding assembly) becomes more prevalent, this problem finds wide-ranging applications in areas as varied as biodiversity research, food production and provenance, and evolutionary reconstruction. Results We introduce a model that relates distances between a mixed sample and reference species to the distances between constituents and reference species. Our model is based on Jaccard indices computed between each sample represented as k-mer sets. The model, built on several assumptions and approximations, allows us to formalize the phylogenetic double-placement problem as a non-convex optimization problem that decomposes mixture distances and performs phylogenetic placement simultaneously. Using a variety of techniques, we are able to solve this optimization problem numerically. We test the resulting method, called MIxed Sample Analysis tool (MISA), on a varied set of simulated and biological datasets. Despite all the assumptions used, the method performs remarkably well in practice. Availability and implementation The software and data are available at https://github.com/balabanmetin/misa and https://github.com/balabanmetin/misa-data. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1815485 1845967
PAR ID:
10171497
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Bioinformatics
Volume:
36
Issue:
Supplement_1
ISSN:
1367-4803
Page Range / eLocation ID:
i335 to i343
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Placing a new species on an existing phylogeny has increasing relevance to several applications. Placement can be used to update phylogenies in a scalable fashion and can help identify unknown query samples using (meta-)barcoding, skimming, or metagenomic data. Maximum likelihood (ML) methods of phylogenetic placement exist, but these methods are not scalable to reference trees with many thousands of leaves, limiting their ability to enjoy benefits of dense taxon sampling in modern reference libraries. They also rely on assembled sequences for the reference set and aligned sequences for the query. Thus, ML methods cannot analyze data sets where the reference consists of unassembled reads, a scenario relevant to emerging applications of genome skimming for sample identification. We introduce APPLES, a distance-based method for phylogenetic placement. Compared to ML, APPLES is an order of magnitude faster and more memory efficient, and unlike ML, it is able to place on large backbone trees (tested for up to 200,000 leaves). We show that using dense references improves accuracy substantially so that APPLES on dense trees is more accurate than ML on sparser trees, where it can run. Finally, APPLES can accurately identify samples without assembled reference or aligned queries using kmer-based distances, a scenario that ML cannot handle. APPLES is available publically at github.com/balabanmetin/apples. 
    more » « less
  2. Abstract Motivation Minimizers are efficient methods to sample k-mers from genomic sequences that unconditionally preserve sufficiently long matches between sequences. Well-established methods to construct efficient minimizers focus on sampling fewer k-mers on a random sequence and use universal hitting sets (sets of k-mers that appear frequently enough) to upper bound the sketch size. In contrast, the problem of sequence-specific minimizers, which is to construct efficient minimizers to sample fewer k-mers on a specific sequence such as the reference genome, is less studied. Currently, the theoretical understanding of this problem is lacking, and existing methods do not specialize well to sketch specific sequences. Results We propose the concept of polar sets, complementary to the existing idea of universal hitting sets. Polar sets are k-mer sets that are spread out enough on the reference, and provably specialize well to specific sequences. Link energy measures how well spread out a polar set is, and with it, the sketch size can be bounded from above and below in a theoretically sound way. This allows for direct optimization of sketch size. We propose efficient heuristics to construct polar sets, and via experiments on the human reference genome, show their practical superiority in designing efficient sequence-specific minimizers. Availability and implementation A reference implementation and code for analyses under an open-source license are at https://github.com/kingsford-group/polarset. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3.   SummaryReconstructing haplotypes of an organism from a set of sequencing reads is a computationally challenging (NP-hard) problem. In reference-guided settings, at the core of haplotype assembly is the task of clustering reads according to their origin, i.e. grouping together reads that sample the same haplotype. Read length limitations and sequencing errors render this problem difficult even for diploids; the complexity of the problem grows with the ploidy of the organism. We present XHap, a novel method for haplotype assembly that aims to learn correlations between pairs of sequencing reads, including those that do not overlap but may be separated by large genomic distances, and utilize the learned correlations to assemble the haplotypes. This is accomplished by leveraging transformers, a powerful deep-learning technique that relies on the attention mechanism to discover dependencies between non-overlapping reads. Experiments on semi-experimental and real data demonstrate that the proposed method significantly outperforms state-of-the-art techniques in diploid and polyploid haplotype assembly tasks on both short and long sequencing reads. Availability and implementationThe code for XHap and the included experiments is available at https://github.com/shoryaconsul/XHap. 
    more » « less
  4. Abstract MotivationAs genome-wide reconstruction of phylogenetic trees becomes more widespread, limitations of available data are being appreciated more than ever before. One issue is that phylogenomic datasets are riddled with missing data, and gene trees, in particular, almost always lack representatives from some species otherwise available in the dataset. Since many downstream applications of gene trees require or can benefit from access to complete gene trees, it will be beneficial to algorithmically complete gene trees. Also, gene trees are often unrooted, and rooting them is useful for downstream applications. While completing and rooting a gene tree with respect to a given species tree has been studied, those problems are not studied in depth when we lack such a reference species tree. ResultsWe study completion of gene trees without a need for a reference species tree. We formulate an optimization problem to complete the gene trees while minimizing their quartet distance to the given set of gene trees. We extend a seminal algorithm by Brodal et al. to solve this problem in quasi-linear time. In simulated studies and on a large empirical data, we show that completion of gene trees using other gene trees is relatively accurate and, unlike the case where a species tree is available, is unbiased. Availability and implementationOur method, tripVote, is available at https://github.com/uym2/tripVote. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract MotivationMetagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample. ResultsWe develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs. Availability and implementationHiFine is available at https://github.com/dyxstat/HiFine. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less