skip to main content

Title: Cosmological constraints from galaxy–lensing cross-correlations using BOSS galaxies with SDSS and CMB lensing
ABSTRACT

We present cosmological parameter constraints based on a joint modelling of galaxy–lensing cross-correlations and galaxy clustering measurements in the SDSS, marginalizing over small-scale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from small-scale modelling uncertainties including baryonic physics.

Authors:
 ;  ;  ;  ;  
Award ID(s):
1814370
Publication Date:
NSF-PAR ID:
10124578
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
1
Page Range or eLocation-ID:
p. 51-68
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The canonical Lambda cold dark matter (ΛCDM) cosmological model makes precise predictions for the clustering and lensing properties of galaxies. It has been shown that the lensing amplitude of galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) is lower than expected given their clustering properties. We present new measurements and modelling of galaxies in the BOSS LOWZ sample. We focus on the radial and stellar mass dependence of the lensing amplitude mismatch. We find an amplitude mismatch of around $35{{\ \rm per\ cent}}$ when assuming ΛCDM with Planck Cosmological Microwave Background (CMB) constraints. This offset is independent of halomore »mass and radial scale in the range Mhalo ∼ 1013.3−1013.9h−1 M⊙ and $r=0.1\!-\!60 \, h^{-1} \mathrm{Mpc}$ ($k \approx 0.05\!-\!20 \, h \, {\rm Mpc}^{-1}$). The observation that the offset is both mass and scale independent places important constraints on the degree to which astrophysical processes (baryonic effects, assembly bias) can fully explain the effect. This scale independence also suggests that the ‘lensing is low’ effect on small and large radial scales probably have the same physical origin. Resolutions based on new physics require a nearly uniform suppression, relative to ΛCDM predictions, of the amplitude of matter fluctuations on these scales. The possible causes of this are tightly constrained by measurements of the CMB and of the low-redshift expansion history.« less
  2. ABSTRACT Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We showmore »that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $\sim 20{{\ \rm per\ cent}}$ improvement in the constraint of $S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$ compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $S_8=0.781^{+0.014}_{-0.015}$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $Q_1=1.14^{+2.20}_{-2.80}$ for DES Y1 only and $Q_1=1.42^{+1.63}_{-1.48}$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ.« less
  3. ABSTRACT

    We describe our non-linear emulation (i.e. interpolation) framework that combines the halo occupation distribution (HOD) galaxy bias model with N-body simulations of non-linear structure formation, designed to accurately predict the projected clustering and galaxy–galaxy lensing signals from luminous red galaxies in the redshift range 0.16 < z < 0.36 on comoving scales 0.6 < rp < 30 $h^{-1} \, \text{Mpc}$. The interpolation accuracy is ≲ 1–2 per cent across the entire physically plausible range of parameters for all scales considered. We correctly recover the true value of the cosmological parameter S8 = (σ8/0.8228)(Ωm/0.3107)0.6 from mock measurements produced via subhalo abundance matching (SHAM)-basedmore »light-cones designed to approximately match the properties of the SDSS LOWZ galaxy sample. Applying our model to Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 14 (DR14) LOWZ galaxy clustering and galaxy-shear cross-correlation measurements made with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) imaging, we perform a prototype cosmological analysis marginalizing over wCDM cosmological parameters and galaxy HOD parameters. We obtain a 4.4 per cent measurement of S8 = 0.847 ± 0.037, in 3.5σ tension with the Planck cosmological results of 1.00 ± 0.02. We discuss the possibility of underestimated systematic uncertainties or astrophysical effects that could explain this discrepancy.

    « less
  4. ABSTRACT Galaxy intrinsic alignments (IAs) have long been recognized as a significant contaminant to weak lensing-based cosmological inference. In this paper we seek to quantify the impact of a common modelling assumption in analytic descriptions of IAs: that of spherically symmetric dark matter haloes. Understanding such effects is important as the current generation of IA models are known to be limited, particularly on small scales, and building an accurate theoretical description will be essential for fully exploiting the information in future lensing data. Our analysis is based on a catalogue of 113 560 galaxies between z = 0.06 and 1.00 from massiveblack-ii,more »a hydrodynamical simulation of box length $100 \, h^{-1}$ Mpc. We find satellite anisotropy contributes at the level of $\ge 30\!-\!40{{\ \rm per\ cent}}$ to the small-scale alignment correlation functions. At separations larger than $1 \, h^{-1}$ Mpc the impact is roughly scale independent, inducing a shift in the amplitude of the IA power spectra of $\sim 20{{\ \rm per\ cent}}$. These conclusions are consistent across the redshift range and between the massiveblack-ii and the illustris simulations. The cosmological implications of these results are tested using a simulated likelihood analysis. Synthetic cosmic shear data are constructed with the expected characteristics (depth, area, and number density) of a future LSST-like survey. Our results suggest that modelling alignments using a halo model based upon spherical symmetry could potentially induce cosmological parameter biases at the ∼1.5σ level for S8 and w.« less
  5. ABSTRACT Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between Dark Energy Spectroscopic Instrument (DESI)-like luminous red galaxies (LRGs) selected from DECam Legacy Survey imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of S/N = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faintmore »limit as s = 0.999 ± 0.015, and find corresponding corrections of the order of a few per cent for $C^{\kappa g}_{\ell }, C^{gg}_{\ell }$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.« less