 Award ID(s):
 1828315
 NSFPAR ID:
 10313056
 Date Published:
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 502
 Issue:
 2
 ISSN:
 00358711
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT We use a simulationbased modelling approach to analyse the anisotropic clustering of the BOSS LOWZ sample over the radial range $0.4 \, h^{1} \, \mathrm{Mpc}$ to $63 \, h^{1} \, \mathrm{Mpc}$, significantly extending what is possible with a purely analytic modelling framework. Our fullscale analysis yields constraints on the growth of structure that are a factor of two more stringent than any other study on large scales at similar redshifts. We infer fσ8 = 0.471 ± 0.024 at $z$ ≈ 0.25, and fσ8 = 0.430 ± 0.025 at $z$ ≈ 0.40; the corresponding ΛCDM predictions of the Planck cosmic microwave background (CMB) analysis are 0.470 ± 0.006 and 0.476 ± 0.005, respectively. Our results are thus consistent with Planck, but also follow the trend seen in previous lowredshift measurements of fσ8 falling slightly below the ΛCDM + CMB prediction. We find that small and largeradial scales yield mutually consistent values of fσ8, but there are 1−2.5σ hints of small scales ($\lt 10 \, h^{1} \, \mathrm{Mpc}$) preferring lower values for fσ8 relative to larger scales. We analyse the constraining power of the full range of radial scales, finding that most of the multipole information about fσ8 is contained in the scales $2 \, h^{1} \, \mathrm{Mpc}\lesssim s \lesssim 20 \, h^{1} \, \mathrm{Mpc}$. Evidently, once the cosmological information of the quasitononlinear regime has been harvested, largescale modes contain only modest additional information about structure growth. Finally, we compare predictions for the galaxy–galaxy lensing amplitude of the two samples against measurements from SDSS and assess the lensingislow effect in light of our findings.more » « less

Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg^{2}reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitude
σ _{8}= 0.819 ± 0.015 at 1.8% precision, , and the Hubble constant ${S}_{8}\equiv {\sigma}_{8}{({\mathrm{\Omega}}_{\mathrm{m}}/0.3)}^{0.5}=0.840\pm 0.028$H _{0}= (68.3 ± 1.1) km s^{−1}Mpc^{−1}at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ _{8}= 0.812 ± 0.013, , and ${S}_{8}\equiv {\sigma}_{8}{({\mathrm{\Omega}}_{\mathrm{m}}/0.3)}^{0.5}=0.831\pm 0.023$H _{0}= (68.1 ± 1.0) km s^{−1}Mpc^{−1}. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS _{8}from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σ to 2.1σ . This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz ∼ 0.5–5 on mostly linear scales and galaxy lensing atz ∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑m _{ν}< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of crosscorrelation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming groundbased CMB surveys. 
ABSTRACT We measure the smallscale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibrecollisions using Pairwise Inverse Probability weights, which give unbiased clustering measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function over the separation range $760\, h^{1}{\rm Mpc}$ with a model based on the aemulus cosmological emulator to measure the growth rate of cosmic structure, parametrized by fσ8. We obtain a measurement of fσ8(z = 0.737) = 0.408 ± 0.038, which is 1.4σ lower than the value expected from 2018 Planck data for a flat ΛCDM model, and is more consistent with recent weaklensing measurements. The level of precision achieved is 1.7 times better than more standard measurements made using only the largescale modes of the same sample. We also fit to the data using the full range of scales $0.1\text{}60\, h^{1}{\rm Mpc}$ modelled by the aemulus cosmological emulator and find a 4.5σ tension in the amplitude of the halo velocity field with the Planck + ΛCDM model, driven by a mismatch on the nonlinear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation Distribution model used in the emulator. Finally, we perform a robust analysis of possible sources of systematics, including the effects of redshift uncertainty and incompleteness due to target selection that were not included in previous analyses fitting to clustering measurements on small scales.

ABSTRACT The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of lowredshift matter clustering, especially if it is extended to the nonlinear regime. To this end, we use an Nbody and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colourselected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scaleindependent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $r_p=0.3\!\!30.0\, h^{1} \, \mathrm{Mpc}$. For a $3{{\ \rm per\ cent}}$ prior on Alens we forecast precisions of $1.9{{\ \rm per\ cent}}$, $2.0{{\ \rm per\ cent}}$, and $1.9{{\ \rm per\ cent}}$ on Ωm, σ8, and $S_8 \equiv \sigma _8\Omega _m^{0.5}$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $r_p=0.3\!\!3.0\, h^{1} \, \mathrm{Mpc}$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($3.0\!\!30.0\, h^{1} \, \mathrm{Mpc}$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $1{{\ \rm per\ cent}}$ further improves the S8 precision to $1.1{{\ \rm per\ cent}}$, and it amplifies the gain from including nonlinear scales. Our emulator achieves per centlevel accuracy similar to the projected DES statistical uncertainties, demonstrating the feasibility of a fully nonlinear analysis. Obtaining precise parameter constraints from multiple galaxy types and from measurements that span linear and nonlinear clustering offers many opportunities for internal crosschecks, which can diagnose systematics and demonstrate the robustness of cosmological results.

ABSTRACT We present cosmological parameter constraints based on a joint modelling of galaxy–lensing crosscorrelations and galaxy clustering measurements in the SDSS, marginalizing over smallscale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from smallscale modelling uncertainties including baryonic physics.