skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining the Role of Mentor Teacher Support in a Professional Learning Experience for Preservice Teachers on Integrating Computational Thinking into Elementary Science Education
Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms.  more » « less
Award ID(s):
1639891
PAR ID:
10124816
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Society for Information Technology & Teacher Education International Conference
Page Range / eLocation ID:
2281–2285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We investigated teacher learning within a professional development (PD) workshop series on computational thinking (CT) for elementary-level mentor teachers. The purpose of the PD was to prepare mentor teachers to support preservice teachers in integrating CT into their classroom practice, toward the broader goal of advancing CT for all in the early grades. We examined the ways in which participants collaboratively built on existing professional knowledge as they engaged in professional learning activities designed to introduce CT and related pedagogies for elementary science education. Our data sources were field notes, artifacts, drawings, written reflections, and focus group interviews. We describe how participants developed new understandings of CT integration and made connections to existing professional knowledge of their students, their curriculum, and their school contexts. We discuss implications for teacher learning and PD design relevant to CT, and make recommendations for future research. 
    more » « less
  2. Field experience personnel, such as cooperating teachers (CTs) and university supervisors (USPs), play an important role in supporting mathematics pre-service teachers (PSTs) to learn about equitable teaching practices. We employed case study methodology to explore the perceptions of CTs and USPs about mathematics identity. A group of CTs and USPs participated in professional development during the Fall 2023 semester to learn about ways to develop students’ mathematics identity. In this brief research report we share these CTs’ and USPs’ ideas about their own mathematics identity, their students’ mathematics identity, and how these ideas influence their teaching practice. Our findings have implications for redesigning field experience in teacher education programs. 
    more » « less
  3. This paper explores the experiences and learning outcomes of preservice elementary teachers (PSTs) as they integrate computational thinking (CT) into their teaching practices during a structured field experience. Through a qualitative content analysis of video reflections from 27 PSTs, the study examines how teaching CT lessons to K-2 students enhances the PSTs’ understanding of CT and their pedagogical skills. The field experience, which involved hands-on activities using ScratchJr and Tale-Bot, revealed several key themes: the importance of hands-on learning for student engagement, the benefits of empowering students to take an active role in their learning, the necessity of balancing teacher guidance with student independence, and the development of PSTs’ confidence in implementing CT activities. The findings suggest that structured field experiences play a crucial role in preparing PSTs to effectively integrate CT into elementary education, bridging the gap between theoretical knowledge and practical application. The study emphasizes the need for teacher preparation programs to incorporate real-world teaching opportunities to foster PSTs' confidence and adaptability in teaching CT, thus equipping them to meet the demands of 21st-century classrooms. 
    more » « less
  4. In the face of the rising prevalence of artificial intelligence (AI) in daily life, there is a need to integrate lessons on AI literacy into K12 settings to equitably engage young adolescents in critical and ethical thinking about AI technologies. This exploratory study reports findings from a teacher professional development project designed to advance teacher AI literacy in preparation for teaching an AI curriculum in their inclusive middle school classrooms. Analysis compares the learning experiences of 30 participating teachers (including Computer Science, Science, Math, English, and Social Studies teachers). Results suggest Science teachers’ understanding of AI concepts, particularly logic structures, is on average higher than their non-Science teacher counterparts. Teacher interviews reveal several thematic differences in Science teachers’ learning from the AI PD as compared to their counterparts, namely learning from reflective discourse with diverse groups. Findings offer insights on the depth and quality of Science teacher AI literacy after participating in an AI teacher PD, with implications for future research in the integration of AI education into Science teachers’ inclusive K12 classrooms. 
    more » « less
  5. In the face of the rising prevalence of artificial intelligence (AI) in daily life, there is a need to integrate lessons on AI literacy into K12 settings to equitably engage young adolescents in critical and ethical thinking about AI technologies. This exploratory study reports findings from a teacher professional development project designed to advance teacher AI literacy in preparation for teaching an AI curriculum in their inclusive middle school classrooms. Analysis compares the learning experiences of 30 participating teachers (including Computer Science, Science, Math, English, and Social Studies teachers). Results suggest Science teachers’ understanding of AI concepts, particularly logic structures, is on average higher than their non-Science teacher counterparts. Teacher interviews reveal several thematic differences in Science teachers’ learning from the AI PD as compared to their counterparts, namely learning from reflective discourse with diverse groups. Findings offer insights on the depth and quality of Science teacher AI literacy after participating in an AI teacher PD, with implications for future research in the integration of AI education into Science teachers’ inclusive K12 classrooms. 
    more » « less