skip to main content


Search for: All records

Award ID contains: 1639891

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With computational thinking (CT) emerging as a prominent component of 21st century science education, equipping teachers with the necessary tools to integrate CT into science lessons becomes increasingly important. One of these tools is confidence in their ability to carry out the integration of CT. This confidence is conceptualized as self-efficacy: the belief in one’s ability to perform a specific task in a specific context. Self-reported self-efficacy in teaching has shown promise as a measure of future behavior and is linked to teacher performance. Current measures of teacher self-efficacy to integrate CT are limited, however, by narrow conceptualizations of CT, oversight of survey design research, and limited evidence of instrument validity. We designed a valid and reliable measure of Teacher Self-Efficacy for integrating Computational Thinking in Science (T-SelECTS) that fits a single latent factor structure. To demonstrate the instrument’s value, we collected data from 58 pre-service teachers who participated in a CT module within their science methods course at a large Mid-Atlantic university. We found evidence of significant development in pre-service teachers’ self-efficacy for integrating CT into science instruction. We discuss how the T-SelECTS instrument could be used in teacher education courses and professional development to measure change in self-efficacy. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract: We used design-based research to investigate an extended professional learning experience to prepare teachers to embed computational thinking in elementary science. Opportunities to interact synchronously in a community of practice - including through in person engagement in embodied challenges, discussion, and resource sharing, appeared to productively support teacher preparedness to embed CT in their science teaching. However, asynchronous collaboration via an online platform was less effective. We describe planned adjustments for future iterations of the program. 
    more » « less
  6. Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms. 
    more » « less
  7. Abstract. We investigated teacher learning within a professional development (PD) workshop series on computational thinking (CT) for elementary-level mentor teachers. The purpose of the PD was to prepare mentor teachers to support preservice teachers in integrating CT into their classroom practice, toward the broader goal of advancing CT for all in the early grades. We examined the ways in which participants collaboratively built on existing professional knowledge as they engaged in professional learning activities designed to introduce CT and related pedagogies for elementary science education. Our data sources were field notes, artifacts, drawings, written reflections, and focus group interviews. We describe how participants developed new understandings of CT integration and made connections to existing professional knowledge of their students, their curriculum, and their school contexts. We discuss implications for teacher learning and PD design relevant to CT, and make recommendations for future research. 
    more » « less