skip to main content


Title: Initial 40 Ar‐ 39 Ar Ages of the Paleocene‐Eocene Boundary Impact Spherules
Abstract

We report40Ar‐39Ar step‐heating ages of Paleocene‐Eocene (P‐E) boundary impact spherules from Atlantic Margin coastal plain and open ocean sites. We test the hypothesis that the P‐E spherules are reworked from an earlier event (e.g., K‐Pg impact at ~66 Ma), which predicts a cooling age discordant from their depositional age of 55.93 ± 0.05 Ma at the P‐E boundary. Isochrons from the step‐heating analysis yield40Ar‐36Ar intercepts in excess of the modern in most cases, indicating that the spherules have excess radiogenic Ar (40Ar*), typical of impact glasses incompletely degassed before solidification. The weighted mean of the isochron‐corrected plateau age is 54.2 ± 2.5 Ma (1σ), and their isochron age is 55.4 ± 4.0 Ma, both indistinguishable from their P‐E depositional age, not supporting the K‐Pg reworking hypothesis. This is consistent with all other stratigraphic and geochemical evidence for an impact at the P‐E boundary and ejecta distribution by air fall.

 
more » « less
Award ID(s):
1737100
NSF-PAR ID:
10449073
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
15
ISSN:
0094-8276
Page Range / eLocation ID:
p. 9091-9102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a method for40Ar/39Ar step‐heating measurements on anhydrous K‐bearing minerals. Samples placed in dimples on Ta foil platforms are heated indirectly with a laser while temperatures are measured with a two‐color pyrometer. The system provides a simple, inexpensive, and reliable means for the heating of samples as small as a few to tens of micrograms. Results for plagioclase separates from the Rustenburg Layered Suite of the circa 2.06 Ga Bushveld Complex closely match previously published data.

     
    more » « less
  2. Abstract

    The hornblende‐ and biotite‐bearing R chondriteLAP04840 is a rare kind of meteorite possibly containing outer solar system water stored during metamorphism or postshock annealing deep within an asteroid. Because little is known regarding its age and origin, we determined40Ar/39Ar ages on hornblende‐rich separates of the meteorite, and obtained plateau ages of 4340(±40) to 4380(±30) Ma. These well‐defined plateau ages, coupled with evidence for postshock annealing, indicate this meteorite records an ancient shock event and subsequent annealing. The age of 4340–4380 Ma (or 4.34–4.38 Ga) for this and other previously dated R chondrites is much older than most impact events recorded by ordinary chondrites and points to an ancient event or events that predated the late heavy bombardment that is recorded in so many meteorites and lunar samples.

     
    more » « less
  3. Abstract

    We present a full characterization of a 20 cm‐thick tephra layer found intercalated in the marine sediments recovered at Site U1524 during International Ocean Discovery Program (IODP) Expedition 374, in the Ross Sea, Antarctica. Tephra bedforms, mineral paragenesis, and major‐ and trace‐element composition on individual glass shards were investigated and the tephra age was constrained by40Ar‐39Ar on sanidine crystals. The40Ar‐39Ar data indicate that sanidine grains are variably contaminated by excess Ar, with the best age estimate of 1.282 ± 0.012 Ma, based on both single‐grain total fusion analyses and step‐heating experiments on multi‐grain aliquots. The tephra is characterized by a very homogeneous rhyolitic composition and a peculiar mineral assemblage, dominated by sanidine, quartz, and minor aenigmatite and arfvedsonite‐riebeckite amphiboles. The tephra from Site U1524 compositionally matches with a ca. 1.3 Ma, rhyolitic pumice fall deposit on the rim of the Chang Peak volcano summit caldera, in the Marie Byrd Land, located ca. 1,300 km from Site U1524. This contribution offers important volcanological data on the eruptive history of Chang Peak volcano and adds a new tephrochronologic marker for the dating, correlation, and synchronization of marine and continental early Pleistocene records of West Antarctica.

     
    more » « less
  4. Abstract

    Deccan Traps flood basalt volcanism affected ecosystems spanning the end‐Cretaceous mass extinction, with the most significant environmental effects hypothesized to be a consequence of the largest eruptions. The Rajahmundry Traps are the farthest exposures (~1,000 km) of Deccan basalt from the putative eruptive centers in the Western Ghats and hence represent some of the largest volume Deccan eruptions. Although the three subaerial Rajahmundry lava flows have been geochemically correlated to the Wai Subgroup of the Deccan Traps, poor precision associated with previous radioisotopic age constraints has prevented detailed comparison with potential climate effects. In this study, we use new40Ar/39Ar dates, paleomagnetic and volcanological analyses, and biostratigraphic constraints for the Rajahmundry lava flows to ascertain the timing and style of their emplacement. We find that the lower and middle flows (65.92 ± 0.25 and 65.67 ± 0.08 Ma, ±1σsystematic uncertainty) were erupted within magnetochron C29r and were a part of the Ambenali Formation of the Deccan Traps. By contrast, the uppermost flow (65.27 ± 0.08 Ma) was erupted in C29n as part of the Mahabaleshwar Formation. Given these age constraints, the Rajahmundry flows were not involved in the end‐Cretaceous extinction as previously hypothesized. To determine whether the emplacement of the Rajahmundry flows could have affected global climate, we estimated their eruptive CO2release and corresponding climate change using scalings from the LOSCAR carbon cycle model. We find that the eruptive gas emissions of these flows were insufficient to directly cause multi‐degree warming; hence, a causal relationship with significant climate warming requires additional Earth system feedbacks.

     
    more » « less
  5. Abstract

    White micas are major rock forming minerals in igneous and metamorphic rocks, and their chemical and isotopic variations can be used to determine pressure, temperature and time (P‐T‐t) histories. We apply40Ar/39Ar multi‐diffusion domain modelling to white micas from blueschists blocks in serpentinite matrix mélange from the exhumed Baja California subduction complex. Thermal history models yielded T‐t paths suggesting that40Ar* resides within multiple diffusion domains with varying40Ar* retentivity. Modelled white mica thermal histories and thermobarometric data were used to forward model continuous P‐T‐t paths. P‐T‐t paths are consistent with previous studies and are interpreted to constrain blueschist block exhumation paths within the Baja accretionary wedge. Our P‐T‐t models use temperature controlled40Ar/39Ar step heat data in which argon loss by volume diffusion can be demonstrated, and for which the white mica petrogenesis is known.

     
    more » « less