skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: People, Pipelines, and Probabilities: Clarifying Significance and Uncertainty in Environmental Impact Assessments
Abstract Determinations of significance play a pivotal role in environmental impact assessments because they point decision makers to the predicted effects of an action most deserving of attention and further study. Impact predictions are always subject to uncertainty because they rely on estimates of future consequences. Yet uncertainty is often neglected or treated in a perfunctory manner as part of the characterization, evaluation, and communication of anticipated consequences and their significance. Proposals to construct fossil fuel pipelines in North America provide a highly visible example; casual treatment of how uncertainty affects significance determinations has resulted in poorly informed stakeholders, frustrated industry proponents, and inconsistent choices on the part of public decision makers. Using environmental assessments for recent pipeline proposals as examples, we highlight five ways in which uncertainty is often neglected when determining impact significance and suggest that a mix of known methods, new guidelines, and appropriate oversight could greatly improve current practices.  more » « less
Award ID(s):
1728807
PAR ID:
10124900
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
40
Issue:
2
ISSN:
0272-4332
Page Range / eLocation ID:
p. 218-226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Public decision-makers incorporate algorithm decision aids, often developed by private businesses, into the policy process, in part, as a method for justifying difficult decisions. Ethicists have worried that over-trust in algorithm advice and concerns about punishment if departing from an algorithm’s recommendation will result in over-reliance and harm democratic accountability. We test these concerns in a set of two pre-registered survey experiments in the judicial context conducted on three representative U.S. samples. The results show no support for the hypothesized blame dynamics, regardless of whether the judge agrees or disagrees with the algorithm. Algorithms, moreover, do not have a significant impact relative to other sources of advice. Respondents who are generally more trusting of elites assign greater blame to the decision-maker when they disagree with the algorithm, and they assign more blame when they think the decision-maker is abdicating their responsibility by agreeing with an algorithm. 
    more » « less
  2. Abstract This paper develops the concept of flood problem framing to understand decision-makers’ priorities in flood risk management in the Los Angeles Metropolitan Region in California (LA Metro). Problem frames shape an individual’s preferences for particular management strategies and their future behaviors. While flooding is a complex, multifaceted problem, with multiple causes and multiple impacts, a decision-maker is most likely to manage only those dimensions of flooding about which they are aware or concerned. To evaluate flood decision-makers’ primary concerns related to flood exposure, vulnerability, and management in the LA Metro, we draw on focus groups with flood control districts, city planners, nonprofit organizations, and other flood-related decision-makers. We identify numerous concerns, including concerns about specific types of floods (e.g., fluvial vs pluvial) and impacts to diverse infrastructure and communities. Our analyses demonstrate that flood concerns aggregate into three problem frames: one concerned with large fluvial floods exacerbated by climate change and their housing, economic, and infrastructure impacts; one concerned with pluvial nuisance flooding, pollution, and historic underinvestment in communities; and one concerned with coastal and fluvial flooding’s ecosystem impacts. While each individual typically articulated concerns that overlapped with only one problem frame, each problem frame was discussed by numerous organization types, suggesting low barriers to cross-organizational coordination in flood planning and response. This paper also advances our understanding of flood risk perception in a region that does not face frequent large floods. Significance StatementThis paper investigates the primary concerns that planners, flood managers, and other decision-makers have about flooding in Southern California. This is important because the way that decision-makers understand flooding shapes the way that they will plan for and respond to flood events. We find that some decision-makers are primarily concerned with large floods affecting large swaths of infrastructure and housing; others are concerned with frequent, small floods that mobilize pollution in low-income areas; and others are concerned with protecting coastal ecosystems during sea level rise. Our results also highlight key priorities for research and practice, including the need for flexible and accessible flood data and education about how to evacuate. 
    more » « less
  3. null (Ed.)
    Algorithmic impact assessments (AIAs) are an emergent form of accountability for entities that build and deploy automated decision-support systems. These are modeled after impact assessments in other domains. Our study of the history of impact assessments shows that "impacts" are an evaluative construct that enable institutions to identify and ameliorate harms experienced because of a policy decision or system. Every domain has different expectations and norms about what constitutes impacts and harms, how potential harms are rendered as the impacts of a particular undertaking, who is responsible for conducting that assessment, and who has the authority to act on the impact assessment to demand changes to that undertaking. By examining proposals for AIAs in relation to other domains, we find that there is a distinct risk of constructing algorithmic impacts as organizationally understandable metrics that are nonetheless inappropriately distant from the harms experienced by people, and which fall short of building the relationships required for effective accountability. To address this challenge of algorithmic accountability, and as impact assessments become a commonplace process for evaluating harms, the FAccT community should A) understand impacts as objects constructed for evaluative purposes, B) attempt to construct impacts as close as possible to actual harms, and C) recognize that accountability governance requires the input of various types of expertise and affected communities. We conclude with lessons for assembling cross-expertise consensus for the co-construction of impacts and to build robust accountability relationships. 
    more » « less
  4. Abstract In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations of DRR- and DRO-MSIPs by presenting multistage stochastic disjunctive programs and algorithms for solving them. These frameworks are useful for optimization problems under uncertainty where the focus is on analyzing outcomes based on multiple decision-makers’ differing perspectives, such as interdiction problems that are attacker-defender games having non-cooperative players. To assess the performance of the algorithms for DRR- and DRO-MSIPs, we consider instances of distributionally ambiguous multistage maximum flow and facility location interdiction problems that are important in their own right. Based on our computational results, we observe that the cutting plane-based approaches are 2800% and 2410% (on average) faster than the reformulation-based approaches for the foregoing instances with distributional risk-aversion and risk-receptiveness, respectively. Additionally, we conducted out-of-sample tests to showcase the significance of the DRR framework in revealing network vulnerabilities and also in mitigating the impact of data corruption. 
    more » « less
  5. null (Ed.)
    Algorithmic impact assessments (AIA) are increasingly being proposed as a mechanism for algorithmic accountability. These assessments are seen as potentially useful for anticipating, avoiding, and mitigating the negative consequences of algorithmic decision-making systems (ADS). At the same time, what an AIA would entail remains under-specified. While promising, AIAs raise as many questions as they answer. Choices about the methods, scope, and purpose of impact assessments structure the possible governance outcomes. Decisions about what type of effects count as an impact, when impacts are assessed, whose interests are considered, who is invited to participate, who conducts the assessment, the public availability of the assessment, and what the outputs of the assessment might be all shape the forms of accountability that AIA proponents seek to encourage. These considerations remain open, and will determine whether and how AIAs can function as a viable governance mechanism in the broader algorithmic accountability toolkit, especially with regard to furthering the public interest. Because AlAs are still an incipient governance strategy, approaching them as social constructions that do not require a single or universal approach offers a chance to produce interventions that emerge from careful deliberation. 
    more » « less