In monitoring station observation, for the best accuracy of rumor source detection, it is important to deploy monitors appropriately into the network. There are, however, a very limited number of studies on the monitoring station selection. This article will study the problem of detecting a single rumormonger based on an observation of selected infection monitoring stations in a complete snapshot taken at some time in an online social network (OSN) following the independent cascade (IC) model. To deploy monitoring stations into the observed network, we propose an influence-distancebased k-station selection method where the influence distance is a conceptual measurement that estimates the probability that a rumor-infected node can influence its uninfected neighbors. Accordingly, a greedy algorithm is developed to find the best k monitoring stations among all rumor-infected nodes with a 2-approximation. Based on the infection path, which is most likely toward the k infection monitoring stations, we derive that an estimator for the “most like” rumor source under the IC model is the Jordan infection center in a graph. Our theoretical analysis is presented in the article. The effectiveness of our method is verified through experiments over both synthetic and real-world datasets. As shown in the results, our k-station selection method outperforms off-the-shelf methods in most cases in the network under the IC model.
more »
« less
Localizing the Information Source in a Network
Information and content can spread in social networks analogous to how diseases spread between organisms. Identifying the source of an outbreak is challenging when the infection times are unknown. We consider the problem of detecting the source of a rumor that spread randomly in a network according to a simple diffusion model, the susceptible-infected (SI) exponential time model. The infection times are unknown. Only the set of nodes that propagated the rumor before a certain time is known. Since evaluating the likelihood of spreads is computationally prohibitive, we propose a simple and efficient procedure to approximate the likelihood and select a candidate rumor source. We empirically demonstrate our method out-performs the Jordan center procedure in various random graphs and a real-world network.
more »
« less
- Award ID(s):
- 1742847
- PAR ID:
- 10125022
- Date Published:
- Journal Name:
- TrueFact 2019 : KDD 2019 Workshop on Truth Discovery and Fact Checking: Theory and Practice
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Online social networks provide a convenient platform for the spread of rumors, which could lead to serious aftermaths such as economic losses and public panic. The classical rumor blocking problem aims to launch a set of nodes as a positive cascade to compete with misinformation in order to limit the spread of rumors. However, most of the related researches were based on a one-dimensional diffusion model. In reality, there is more than one feature associated with an object. A user’s impression on this object is determined not just by one feature but by her overall evaluation of all features associated with it. Thus, the influence spread of this object can be decomposed into the spread of multiple features. Based on that, we design a multi-feature diffusion model (MF-model) in this paper and formulate a multi-feature rumor blocking (MFRB) problem on a multi-layer network structure according to this model. To solve the MFRB problem, we design a creative sampling method called Multi-Sampling, which can be applied to this multi-layer network structure. Then, we propose a Revised-IMM algorithm and obtain a satisfactory approximate solution to MFRB. Finally, we evaluate our proposed algorithm by conducting experiments on real datasets, which shows the effectiveness of our Revised- IMM and its advantage to their baseline algorithms.more » « less
-
Epidemics like Covid-19 and Ebola have impacted people’s lives signifcantly. The impact of mobility of people across the countries or states in the spread of epidemics has been signifcant. The spread of disease due to factors local to the population under consideration is termed the endogenous spread. The spread due to external factors like migration, mobility, etc., is called the exogenous spread. In this paper, we introduce the Exo-SIR model, an extension of the popular SIR model and a few variants of the model. The novelty in our model is that it captures both the exogenous and endogenous spread of the virus. First, we present an analytical study. Second, we simulate the Exo-SIR model with and without assuming contact network for the population. Third, we implement the Exo-SIR model on real datasets regarding Covid-19 and Ebola. We found that endogenous infection is infuenced by exogenous infection. Furthermore, we found that the Exo-SIR model predicts the peak time better than the SIR model. Hence, the Exo-SIR model would be helpful for governments to plan policy interventions at the time of a pandemic. Keywords Covid-19, Ebola, Epidemic modeling, Compartment model, Exogenous infection, Endogenous infection, SIR, Exo-SIRmore » « less
-
Hill, Alison L. (Ed.)The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks.more » « less
-
Although studies have investigated cyber-rumoring previous to the pandemic, little research has been undertaken to study rumors and rumor-corrections during the COVID-19 (coronavirus disease 2019) pandemic. Drawing on prior studies about how online stories become viral, this study will fill that gap by investigating the retransmission of COVID-19 rumors and corrective messages on Sina Weibo, the largest and most popular microblogging site in China. This study examines the impact of rumor types, content attributes (including frames, emotion, and rationality), and source characteristics (including follower size and source identity) to show how they affect the likelihood of a COVID-19 rumor and its correction being shared. By exploring the retransmission of rumors and their corrections in Chinese social media, this study will not only advance scholarly understanding but also reveal how corrective messages can be crafted to debunk cyber-rumors in particular cultural contexts.more » « less
An official website of the United States government

