skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cattle transport network predicts endemic and epidemic foot-and-mouth disease risk on farms in Turkey
The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks.  more » « less
Award ID(s):
1911962
PAR ID:
10350312
Author(s) / Creator(s):
; ; ;
Editor(s):
Hill, Alison L.
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
8
ISSN:
1553-7358
Page Range / eLocation ID:
e1010354
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lau, Eric HY (Ed.)
    Foot and Mouth Disease (FMD) affects cloven-hoofed animals globally and has become a major economic burden for many countries around the world. Countries that have had recent FMD outbreaks are prohibited from exporting most meat products; this has major economic consequences for farmers in those countries, particularly farmers that experience outbreaks or are near outbreaks. Reducing the number of FMD outbreaks in countries where the disease is endemic is an important challenge that could drastically improve the livelihoods of millions of people. As a result, significant effort is expended on surveillance; but there is a concern that uninformative surveillance strategies may waste resources that could be better used on control management. Rapid detection through sentinel surveillance may be a useful tool to reduce the scale and burden of outbreaks. In this study, we use an extensive outbreak and cattle shipment network dataset from the Republic of Türkiye to retrospectively test three possible strategies for sentinel surveillance allocation in countries with endemic FMD and minimal existing FMD surveillance infrastructure that differ in their data requirements: ranging from low to high data needs, we allocate limited surveillance to [1] farms that frequently send and receive shipments of animals (Network Connectivity), [2] farms near other farms with past outbreaks (Spatial Proximity) and [3] farms that receive many shipments from other farms with past outbreaks (Network Proximity). We determine that all of these surveillance methods find a similar number of outbreaks – 2-4.5 times more outbreaks than were detected by surveying farms at random. On average across surveillance efforts, the Network Proximity and Network Connectivity methods each find a similar number of outbreaks and the Spatial Proximity method always finds the fewest outbreaks. Since the Network Proximity method does not outperform the other methods, these results indicate that incorporating both cattle shipment data and outbreak data provides only marginal benefit over the less data-intensive surveillance allocation methods for this objective. We also find that these methods all find more outbreaks when outbreaks are rare. This is encouraging, as early detection is critical for outbreak management. Overall, since the Spatial Proximity and Network Connectivity methods find a similar proportion of outbreaks, and are less data-intensive than the Network Proximity method, countries with endemic FMD whose resources are constrained could prioritize allocating sentinels based on whichever of those two methods requires less additional data collection. 
    more » « less
  2. Abstract As a highly contagious livestock viral disease, foot-and-mouth disease poses a great threat to the beef-cattle industry. Direct animal movement is always considered as a major route for between-farm transmission of FMD virus. Sharing contaminated equipment and vehicles have also attracted increasing interests as an indirect but considerable route for FMD virus transmission. With the rapid development of communication technologies, information-sharing techniques have been used to control epidemics. In this paper, we built farm-level time-series three-layer networks to simulate the between-farm FMD virus transmission in southwest Kansas by cattle movements (direct-contact layer) and truck visits (indirect-contact layer) and evaluate the impact of information-sharing techniques (information-sharing layer) on mitigating the epidemic. Here, the information-sharing network is defined as the structure that enables the quarantine of farms that are connected with infected farms. When a farm is infected, its infection status is shared with the neighboring farms in the information-sharing network, which in turn become quarantined. The results show that truck visits can enlarge the epidemic size and prolong the epidemic duration of the FMD outbreak by cattle movements, and that the information-sharing technique is able to mitigate the epidemic. The mitigation effect of the information-sharing network varies with the information-sharing network topology and different participation levels. In general, an increased participation leads to a decreased epidemic size and an increased quarantine size. We compared the mitigation performance of three different information-sharing networks (random network, contact-based network, and distance-based network) and found the outbreak on the network with contact-based information-sharing layer has the smallest epidemic size under almost any participation level and smallest quarantine size with high participation. Furthermore, we explored the potential economic loss from the infection and the quarantine. By varying the ratio of the average loss of quarantine to the loss of infection, we found high participation results in reduced economic losses under the realistic assumption that culling costs are much greater than quarantine costs. 
    more » « less
  3. null (Ed.)
    Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal–oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction. 
    more » « less
  4. null (Ed.)
    An actively controlled Susceptible-Infected-Susceptible (actSIS) contagion model is presented for studying epidemic dynamics with continuous-time feedback control of infection rates. Our work is inspired by the observation that epidemics can be controlled through decentralized disease-control strategies such as quarantining, sheltering in place, social distancing, etc., where individuals can actively modify their contact rates in response to observations of the infection levels in the population. Accounting for a time lag in observations and categorizing individuals into distinct sub-populations based on their risk profiles, we show that the actSIS model manifests qualitatively different features as compared with the SIS model. In a homogeneous population of risk-averters, the endemic equilibrium is always reduced, although the transient infection level can overshoot or undershoot. In a homogeneous population of risk-tolerating individuals, the system exhibits bistability, which can also lead to reduced infection. For a heterogeneous population comprised of risk-tolerators and risk-averters, we prove conditions on model parameters for the existence of a Hopf bifurcation and sustained oscillations in the infected population. 
    more » « less
  5. Information and content can spread in social networks analogous to how diseases spread between organisms. Identifying the source of an outbreak is challenging when the infection times are unknown. We consider the problem of detecting the source of a rumor that spread randomly in a network according to a simple diffusion model, the susceptible-infected (SI) exponential time model. The infection times are unknown. Only the set of nodes that propagated the rumor before a certain time is known. Since evaluating the likelihood of spreads is computationally prohibitive, we propose a simple and efficient procedure to approximate the likelihood and select a candidate rumor source. We empirically demonstrate our method out-performs the Jordan center procedure in various random graphs and a real-world network. 
    more » « less