Dynamic time warping estimates the alignment between two sequences and is designed to handle a variable amount of time warping. In many contexts, it performs poorly when confronted with two sequences of different scale, in which the average slope of the true alignment path in the pairwise cost matrix deviates significantly from one. This paper investigates ways to improve the robustness of DTW to such global time warping conditions, using an audio–audio alignment task as a motivating scenario of interest. We modify a dataset commonly used for studying audio–audio synchronization in order to construct a benchmark in which the global time warping conditions are carefully controlled, and we evaluate the effectiveness of several strategies designed to handle global time warping. Among the strategies tested, there is a clear winner: performing sequence length normalization via downsampling before invoking DTW. This method achieves the best alignment accuracy across a wide range of global time warping conditions, and it maintains or reduces the runtime compared to standard usages of DTW. We present experiments and analyses to demonstrate its effectiveness in both controlled and realistic scenarios.
more »
« less
Trainable Time Warping: Aligning Time-series in the Continuous-time Domain
DTW calculates the similarity or alignment between two signals, subject to temporal warping. However, its computational complexity grows exponentially with the number of time-series. Although there have been algorithms developed that are linear in the number of time-series, they are generally quadratic in time-series length. The exception is generalized time warping (GTW), which has linear computational cost. Yet, it can only identify simple time warping functions. There is a need for a new fast, high-quality multisequence alignment algorithm. We introduce trainable time warping (TTW), whose complexity is linear in both the number and the length of time-series. TTW performs alignment in the continuoustime domain using a sinc convolutional kernel and a gradient-based optimization technique. We compare TTW and GTW on S5 UCR datasets in time-series averaging and classification. TTW outperforms GTW on 67.1% of the datasets for the averaging tasks, and 61.2% of the datasets for the classification tasks.
more »
« less
- Award ID(s):
- 1651740
- PAR ID:
- 10125069
- Date Published:
- Journal Name:
- International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
- Page Range / eLocation ID:
- 3502 to 3506
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Individual models of infectious diseases or trajectories coming from different simulations may vary considerably, making it challenging for public communication and supporting policy-making. Therefore, it is common in public health to first create a consensus across multiple models and simulations through ensembling. However, current methods are limited to mean and median ensembles that perform aggregation of scale (cases, hospitalizations, deaths) along the time axis, which often misrepresents the underlying trajectories -- e.g., they underrepresent the peak. Instead, we wish to create an ensemble that represents aggregation simultaneously over both time and scale and thus better preserves the properties of the trajectories. This is particularly useful for public health where time-series have a sequence of meaningful local trends that are ordered, e.g., a surge to an increase to a peak to a decrease. We propose a novel alignment method DTW+SBA, which combines a representation of local trends along with dynamic time warping barycenter averaging. We prove key properties of this method that ensure appropriate alignment based on local trends. We demonstrate on real multi-model outputs that our approach preserves the properties of underlying trajectories. We also show that our alignment leads to a more sensible clustering of epidemic trajectories.more » « less
-
null (Ed.)Counting homomorphisms of a constant sized pattern graph H in an input graph G is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input G and the pattern H. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of H, H-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let m denote the number of edges in G. We prove the following: if the largest induced cycle in H has length at most 5, then there is an O(mlogm) algorithm for counting H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant γ>0, such that there is no o(m1+γ) time algorithm for counting H-homomorphisms.more » « less
-
null (Ed.)Counting homomorphisms of a constant sized pattern graph H in an input graph G is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input G and the pattern H. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of H, H-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let m denote the number of edges in G. We prove the following: if the largest induced cycle in H has length at most 5, then there is an O(m log m) algorithm for counting H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant γ > 0, such that there is no o(m1+γ) time algorithm for counting H-homomorphisms.more » « less
-
Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence u↦y by simply simulating a linear continuous-time state-space representation ˙x=Ax+Bu,y=Cx+Du. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices A that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences.more » « less