skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emotion Recognition from Natural Phone Conversations in Individuals with and without Recent Suicidal Ideation
Suicide is a serious public health concern in the U.S., taking the lives of over 47,000 people in 2017. Early detection of suicidal ideation is key to prevention. One promising approach to symptom monitoring is suicidal speech prediction, as speech can be passively collected and may indicate changes in risk. However, directly identifying suicidal speech is difficult, as characteristics of speech can vary rapidly compared with suicidal thoughts. Suicidal ideation is also associated with emotion dysregulation. Therefore, in this work, we focus on the detection of emotion from speech and its relation to suicide. We introduce the Ecological Measurement of Affect, Speech, and Suicide (EMASS) dataset, which contains phone call recordings of individuals recently discharged from the hospital following admission for suicidal ideation or behavior, along with controls. Participants self-report their emotion periodically throughout the study. However, the dataset is relatively small and has uncertain labels. Because of this, we find that most features traditionally used for emotion classification fail. We demonstrate how outside emotion datasets can be used to generate more relevant features, making this analysis possible. Finally, we use emotion predictions to differentiate healthy controls from those with suicidal ideation, providing evidence for suicidal speech detection using emotion.  more » « less
Award ID(s):
1651740
PAR ID:
10125071
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Interspeech
Page Range / eLocation ID:
3282 to 3286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundIn 2023, the United States experienced its highest- recorded number of suicides, exceeding 50,000 deaths. In the realm of psychiatric disorders, major depressive disorder stands out as the most common issue, affecting 15% to 17% of the population and carrying a notable suicide risk of approximately 15%. However, not everyone with depression has suicidal thoughts. While “suicidal depression” is not a clinical diagnosis, it may be observed in daily life, emphasizing the need for awareness. ObjectiveThis study aims to examine the dynamics, emotional tones, and topics discussed in posts within the r/Depression subreddit, with a specific focus on users who had also engaged in the r/SuicideWatch community. The objective was to use natural language processing techniques and models to better understand the complexities of depression among users with potential suicide ideation, with the goal of improving intervention and prevention strategies for suicide. MethodsArchived posts were extracted from the r/Depression and r/SuicideWatch Reddit communities in English spanning from 2019 to 2022, resulting in a final data set of over 150,000 posts contributed by approximately 25,000 unique overlapping users. A broad and comprehensive mix of methods was conducted on these posts, including trend and survival analysis, to explore the dynamic of users in the 2 subreddits. The BERT family of models extracted features from data for sentiment and thematic analysis. ResultsOn August 16, 2020, the post count in r/SuicideWatch surpassed that of r/Depression. The transition from r/Depression to r/SuicideWatch in 2020 was the shortest, lasting only 26 days. Sadness emerged as the most prevalent emotion among overlapping users in the r/Depression community. In addition, physical activity changes, negative self-view, and suicidal thoughts were identified as the most common depression symptoms, all showing strong positive correlations with the emotion tone of disappointment. Furthermore, the topic “struggles with depression and motivation in school and work” (12%) emerged as the most discussed topic aside from suicidal thoughts, categorizing users based on their inclination toward suicide ideation. ConclusionsOur study underscores the effectiveness of using natural language processing techniques to explore language markers and patterns associated with mental health challenges in online communities like r/Depression and r/SuicideWatch. These insights offer novel perspectives distinct from previous research. In the future, there will be potential for further refinement and optimization of machine classifications using these techniques, which could lead to more effective intervention and prevention strategies. 
    more » « less
  2. Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suiciderelated social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions. 
    more » « less
  3. Suicide is a negative outcome of combination of complex personal, social and mental health factors, which forces the individual to consider it as the only way out to their problems. Suicide has become one of the most significant causes of death in the United States. A major cause of this ominous event is due to mental illnesses such as major depression and bipolar depression. With an aim to increase the awareness of suicide and improve the quality of life of people who are vulnerable or prone to suicidal ideation, this research focuses on developing an IoT-based framework that can help in continuously monitoring physiological and behavioral signals of the individual. The proposed framework, M-SID, is designed based on a hypothesis to capture rapid variation of suicidal ideation using physiological signals. The proposed research is validated with the help of a custom-built hardware and the results are verified using a commercially available wrist band. 
    more » « less
  4. Bipolar Disorder is a chronic psychiatric illness characterized by pathological mood swings associated with severe disruptions in emotion regulation. Clinical monitoring of mood is key to the care of these dynamic and incapacitating mood states. Frequent and detailed monitoring improves clinical sensitivity to detect mood state changes, but typically requires costly and limited resources. Speech characteristics change during both depressed and manic states, suggesting automatic methods applied to the speech signal can be effectively used to monitor mood state changes. However, speech is modulated by many factors, which renders mood state prediction challenging. We hypothesize that emotion can be used as an intermediary step to improve mood state prediction. This paper presents critical steps in developing this pipeline, including (1) a new in the wild emotion dataset, the PRIORI Emotion Dataset, collected from everyday smartphone conversational speech recordings, (2) activation/valence emotion recognition baselines on this dataset (PCC of 0.71 and 0.41, respectively), and (3) significant correlation between predicted emotion and mood state for individuals with bipolar disorder. This provides evidence and a working baseline for the use of emotion as a meta-feature for mood state monitoring. 
    more » « less
  5. Large generative AI models (GMs) like GPT and DALL-E are trained to generate content for general, wide-ranging purposes. GM content filters are generalized to filter out content which has a risk of harm in many cases, e.g., hate speech. However, prohibited content is not always harmful -- there are instances where generating prohibited content can be beneficial. So, when GMs filter out content, they preclude beneficial use cases along with harmful ones. Which use cases are precluded reflects the values embedded in GM content filtering. Recent work on red teaming proposes methods to bypass GM content filters to generate harmful content. We coin the term green teaming to describe methods of bypassing GM content filters to design for beneficial use cases. We showcase green teaming by: 1) Using ChatGPT as a virtual patient to simulate a person experiencing suicidal ideation, for suicide support training; 2) Using Codex to intentionally generate buggy solutions to train students on debugging; and 3) Examining an Instagram page using Midjourney to generate images of anti-LGBTQ+ politicians in drag. Finally, we discuss how our use cases demonstrate green teaming as both a practical design method and a mode of critique, which problematizes and subverts current understandings of harms and values in generative AI. 
    more » « less