skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups
Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suiciderelated social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions.  more » « less
Award ID(s):
2505865
PAR ID:
10631172
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8373-7
Page Range / eLocation ID:
189 to 199
Format(s):
Medium: X
Location:
Orlando, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Suicide is a negative outcome of combination of complex personal, social and mental health factors, which forces the individual to consider it as the only way out to their problems. Suicide has become one of the most significant causes of death in the United States. A major cause of this ominous event is due to mental illnesses such as major depression and bipolar depression. With an aim to increase the awareness of suicide and improve the quality of life of people who are vulnerable or prone to suicidal ideation, this research focuses on developing an IoT-based framework that can help in continuously monitoring physiological and behavioral signals of the individual. The proposed framework, M-SID, is designed based on a hypothesis to capture rapid variation of suicidal ideation using physiological signals. The proposed research is validated with the help of a custom-built hardware and the results are verified using a commercially available wrist band. 
    more » « less
  2. Greenspace positively impacts mental health. Previous research has focused on the greenspace-mental health relationship in urban areas. Yet, little work has looked at rural areas despite rural communities reporting similar rates of poor mental health outcomes and higher rates of suicide mortality compared with urban areas. This ecological research study examined the following research questions: (1) Do public and/or private greenspaces affect the spatial distribution of mental health outcomes in North Carolina? (2) Does this relationship change with rurality? Emergency department data for 6 mental health conditions and suicide mortality data from 2009 to 2018 were included in this analysis. Spatial error and ordinary least squares regressions were used to examine the influence of public and private greenspace quantity on mental health in rural and urban communities. Results suggest greenspace benefits mental health in rural and urban communities. The strength of this relationship varies with urbanity and between public and private greenspaces, suggesting a more complex causal relationship. Given the high case counts and often lower density of mental health care facilities in rural areas, focusing attention on low-cost mental health interventions, such as greenspace, is important when considering rural mental health care. 
    more » « less
  3. BackgroundThe COVID-19 pandemic has resulted in heightened levels of depression, anxiety, and other mental health issues due to sudden changes in daily life, such as economic stress, social isolation, and educational irregularity. Accurately assessing emotional and behavioral changes in response to the pandemic can be challenging, but it is essential to understand the evolving emotions, themes, and discussions surrounding the impact of COVID-19 on mental health. ObjectiveThis study aims to understand the evolving emotions and themes associated with the impact of COVID-19 on mental health support groups (eg, r/Depression and r/Anxiety) on Reddit (Reddit Inc) during the initial phase and after the peak of the pandemic using natural language processing techniques and statistical methods. MethodsThis study used data from the r/Depression and r/Anxiety Reddit communities, which consisted of posts contributed by 351,409 distinct users over a period spanning from 2019 to 2022. Topic modeling and Word2Vec embedding models were used to identify key terms associated with the targeted themes within the data set. A range of trend and thematic analysis techniques, including time-to-event analysis, heat map analysis, factor analysis, regression analysis, and k-means clustering analysis, were used to analyze the data. ResultsThe time-to-event analysis revealed that the first 28 days following a major event could be considered a critical window for mental health concerns to become more prominent. The theme trend analysis revealed key themes such as economic stress, social stress, suicide, and substance use, with varying trends and impacts in each community. The factor analysis highlighted pandemic-related stress, economic concerns, and social factors as primary themes during the analyzed period. Regression analysis showed that economic stress consistently demonstrated the strongest association with the suicide theme, whereas the substance theme had a notable association in both data sets. Finally, the k-means clustering analysis showed that in r/Depression, the number of posts related to the “depression, anxiety, and medication” cluster decreased after 2020, whereas the “social relationships and friendship” cluster showed a steady decrease. In r/Anxiety, the “general anxiety and feelings of unease” cluster peaked in April 2020 and remained high, whereas the “physical symptoms of anxiety” cluster showed a slight increase. ConclusionsThis study sheds light on the impact of COVID-19 on mental health and the related themes discussed in 2 web-based communities during the pandemic. The results offer valuable insights for developing targeted interventions and policies to support individuals and communities in similar crises. 
    more » « less
  4. BackgroundIn 2023, the United States experienced its highest- recorded number of suicides, exceeding 50,000 deaths. In the realm of psychiatric disorders, major depressive disorder stands out as the most common issue, affecting 15% to 17% of the population and carrying a notable suicide risk of approximately 15%. However, not everyone with depression has suicidal thoughts. While “suicidal depression” is not a clinical diagnosis, it may be observed in daily life, emphasizing the need for awareness. ObjectiveThis study aims to examine the dynamics, emotional tones, and topics discussed in posts within the r/Depression subreddit, with a specific focus on users who had also engaged in the r/SuicideWatch community. The objective was to use natural language processing techniques and models to better understand the complexities of depression among users with potential suicide ideation, with the goal of improving intervention and prevention strategies for suicide. MethodsArchived posts were extracted from the r/Depression and r/SuicideWatch Reddit communities in English spanning from 2019 to 2022, resulting in a final data set of over 150,000 posts contributed by approximately 25,000 unique overlapping users. A broad and comprehensive mix of methods was conducted on these posts, including trend and survival analysis, to explore the dynamic of users in the 2 subreddits. The BERT family of models extracted features from data for sentiment and thematic analysis. ResultsOn August 16, 2020, the post count in r/SuicideWatch surpassed that of r/Depression. The transition from r/Depression to r/SuicideWatch in 2020 was the shortest, lasting only 26 days. Sadness emerged as the most prevalent emotion among overlapping users in the r/Depression community. In addition, physical activity changes, negative self-view, and suicidal thoughts were identified as the most common depression symptoms, all showing strong positive correlations with the emotion tone of disappointment. Furthermore, the topic “struggles with depression and motivation in school and work” (12%) emerged as the most discussed topic aside from suicidal thoughts, categorizing users based on their inclination toward suicide ideation. ConclusionsOur study underscores the effectiveness of using natural language processing techniques to explore language markers and patterns associated with mental health challenges in online communities like r/Depression and r/SuicideWatch. These insights offer novel perspectives distinct from previous research. In the future, there will be potential for further refinement and optimization of machine classifications using these techniques, which could lead to more effective intervention and prevention strategies. 
    more » « less
  5. null (Ed.)
    Background The COVID-19 pandemic has caused several disruptions in personal and collective lives worldwide. The uncertainties surrounding the pandemic have also led to multifaceted mental health concerns, which can be exacerbated with precautionary measures such as social distancing and self-quarantining, as well as societal impacts such as economic downturn and job loss. Despite noting this as a “mental health tsunami”, the psychological effects of the COVID-19 crisis remain unexplored at scale. Consequently, public health stakeholders are currently limited in identifying ways to provide timely and tailored support during these circumstances. Objective Our study aims to provide insights regarding people’s psychosocial concerns during the COVID-19 pandemic by leveraging social media data. We aim to study the temporal and linguistic changes in symptomatic mental health and support expressions in the pandemic context. Methods We obtained about 60 million Twitter streaming posts originating from the United States from March 24 to May 24, 2020, and compared these with about 40 million posts from a comparable period in 2019 to attribute the effect of COVID-19 on people’s social media self-disclosure. Using these data sets, we studied people’s self-disclosure on social media in terms of symptomatic mental health concerns and expressions of support. We employed transfer learning classifiers that identified the social media language indicative of mental health outcomes (anxiety, depression, stress, and suicidal ideation) and support (emotional and informational support). We then examined the changes in psychosocial expressions over time and language, comparing the 2020 and 2019 data sets. Results We found that all of the examined psychosocial expressions have significantly increased during the COVID-19 crisis—mental health symptomatic expressions have increased by about 14%, and support expressions have increased by about 5%, both thematically related to COVID-19. We also observed a steady decline and eventual plateauing in these expressions during the COVID-19 pandemic, which may have been due to habituation or due to supportive policy measures enacted during this period. Our language analyses highlighted that people express concerns that are specific to and contextually related to the COVID-19 crisis. Conclusions We studied the psychosocial effects of the COVID-19 crisis by using social media data from 2020, finding that people’s mental health symptomatic and support expressions significantly increased during the COVID-19 period as compared to similar data from 2019. However, this effect gradually lessened over time, suggesting that people adapted to the circumstances and their “new normal.” Our linguistic analyses revealed that people expressed mental health concerns regarding personal and professional challenges, health care and precautionary measures, and pandemic-related awareness. This study shows the potential to provide insights to mental health care and stakeholders and policy makers in planning and implementing measures to mitigate mental health risks amid the health crisis. 
    more » « less