An accurate identification of species and communities is a prerequisite for analysing and recording biodiversity and community shifts. In the context of marine biodiversity conservation and management, this review outlines past, present and forward-looking perspectives on identifying and recording planktonic diversity by illustrating the transition from traditional species identification based on morphological diagnostic characters to full molecular genetic identification of marine assemblages. In this process, the article presents the methodological advancements by discussing progress and critical aspects of the crossover from traditional to novel and future molecular genetic identifications and it outlines the advantages of integrative approaches using the strengths of both morphological and molecular techniques to identify species and assemblages. We demonstrate this process of identifying and recording marine biodiversity on pelagic copepods as model taxon. Copepods are known for their high taxonomic and ecological diversity and comprise a huge variety of behaviours, forms and life histories, making them a highly interesting and well-studied group in terms of biodiversity and ecosystem functioning. Furthermore, their short life cycles and rapid responses to changing environments make them good indicators and core research components for ecosystem health and status in the light of environmental change. This article is part of the thememore »
Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities
More Like this
-
-
Marine barite (BaSO4) is a relatively ubiquitous, though minor, component of ocean sediments. Modern studies of the accumulation of barite in ocean sediments have demonstrated a robust correlation between barite accumulation rates and carbon export to the deep ocean. This correlation has been used to develop quantitative relationships between barite accumulation rates and export production and is used to reconstruct export production in the geologic past, particularly during times of dynamic changes in the carbon cycle. We review the processes that affect the formation and preservation of marine barite, as well as those controlling the relationship between the barium (Ba) and carbon biogeochemical cycles. Additionally, we take a new approach to modeling the marine Ba cycle as a two-box model, specifically evaluating Ba utilization in the surface ocean and refining the equation describing the relationship between export production and barite formation. We compare these new results with past modeling efforts. The new model demonstrates that increases in export production can lead to sustained increases in barite accumulation in marine sediments without resulting in complete surface water Ba depletion, which is distinctly different from previous modeling results.