Off-label drug use refers to using marketed drugs for indications that are not listed in their FDA labeling information. Such uses are very common and sometimes inevitable in clinical practice. To some extent, off-label drug uses provide a pathway for clinical innovation, however, they could cause serious adverse effects due to lacking scientific research and tests. Since identifying the off-label uses can provide a clue to the stakeholders including healthcare providers, patients, and medication manufacturers to further the investigation on drug efficacy and safety, it raises the demand for a systematic way to detect off-label uses. Given data contributed by health consumers in online health communities (OHCs), we developed an automated approach to detect off-label drug uses based on heterogeneous network mining. We constructed a heterogeneous healthcare network with medical entities (e.g. disease, drug, adverse drug reaction) mined from the text corpus, which involved 50 diseases, 1,297 drugs, and 185 ADRs, and determined 13 meta paths between the drugs and diseases. We developed three metrics to represent the meta-path-based topological features. With the network features, we trained the binary classifiers built on Random Forest algorithm to recognize the known drug-disease associations. The best classification model that used lift to measure path weights obtained F1-score of 0.87, based on which, we identified 1,009 candidates of off-label drug uses and examined their potential by searching evidence from PubMed and FAERS.
more »
« less
Mining heterogeneous network for drug repositioning using phenotypic information extracted from social media and pharmaceutical databases
Drug repositioning has drawn significant attention for drug development in pharmaceutical research and industry, because of its advantages in cost and time compared with the de novo drug development. The availability of biomedical databases and online health-related information, as well as the high-performance computing, empowers the development of computational drug repositioning methods. In this work, we developed a systematic approach that identifies repositioning drugs based on heterogeneous network mining using both pharmaceutical databases (PharmGKB and SIDER) and online health community (MedHelp). By utilizing adverse drug reactions (ADRs) as the intermediate, we constructed a heterogeneous health network containing drugs, diseases, and ADRs, and developed path-based heterogeneous network mining approaches for drug repositioning. Additionally, we investigated on how the data sources affect the performance on drug repositioning. Experiment results showed that combining both PharmKGB and MedHelp identified 479 repositioning drugs, which are more than the repositioning drugs discovered by other alternatives. In addition, 31% of the 479 of the discovered repositioning drugs were supported by evidence from PubMed.
more »
« less
- Award ID(s):
- 1741306
- PAR ID:
- 10125495
- Date Published:
- Journal Name:
- Artificial intelligence in medicine
- Volume:
- 96
- ISSN:
- 0933-3657
- Page Range / eLocation ID:
- 80 - 92
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Off-label drug use is quite common in clinical practice and inevitable to some extent. Such uses might deliver effective treatment and suggest clinical innovation sometimes, however, they have the unknown risk to cause serious outcomes due to lacking scientific support. As gaining information about off-label drug use could present a clue to the stakeholders such as healthcare professionals and medication manufacturers to further the investigation on drug efficacy and safety, it raises the need to develop a systematic way to detect off-label drug uses. Considering the increasing discussions in online health communities (OHCs) among the health consumers, we proposed to harness the large volume of timely information in OHCs to develop an automated method for detecting off-label drug uses from health consumer generated data. From the text corpus, we extracted medical entities (diseases, drugs, and adverse drug reactions) with lexicon-based approaches and measured their interactions with word embedding models, based on which, we constructed a heterogeneous healthcare network. We defined several meta-path-based indicators to describe the drug-disease associations in the heterogeneous network and used them as features to train a binary classifier built on Random Forest algorithm, to recognize the known drug-disease associations. The classification model obtained better results when incorporating word embedding features and achieved the best performance when using both association rule mining features and word embedding features, with F1-score reaching 0.939, based on which, we identified 2,125 possible off-label drug uses and checked their potential by searching evidence in PubMed and FAERS.more » « less
-
Abstract MotivationAccurately predicting drug–target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks. ResultsInspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g. compound–protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning. Availability and implementationThe source code and data used in NeoDTI are available at: https://github.com/FangpingWan/NeoDTI. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
null (Ed.)Abstract The network-based proximity between drug targets and disease genes can provide novel insights regarding the repercussions, interplay, and repositioning of drugs in the context of disease. Current understanding and treatment for reversing of the fibrotic process is limited in systemic sclerosis (SSc). We have developed a network-based analysis for drug effects that takes into account the human interactome network, proximity measures between drug targets and disease-associated genes, genome-wide gene expression and disease modules that emerge through pertinent analysis. Currently used and potential drugs showed a wide variation in proximity to SSc-associated genes and distinctive proximity to the SSc-relevant pathways, depending on their class and targets. Tyrosine kinase inhibitors (TyKIs) approach disease gene through multiple pathways, including both inflammatory and fibrosing processes. The SSc disease module includes the emerging molecular targets and is in better accord with the current knowledge of the pathophysiology of the disease. In the disease-module network, the greatest perturbing activity was shown by nintedanib, followed by imatinib, dasatinib, and acetylcysteine. Suppression of the SSc-relevant pathways and alleviation of the skin fibrosis was remarkable in the inflammatory subsets of the SSc patients receiving TyKI therapy. Our results show that network-based drug-disease proximity offers a novel perspective into a drug’s therapeutic effect in the SSc disease module. This could be applied to drug combinations or drug repositioning, and be helpful guiding clinical trial design and subgroup analysis.more » « less
-
null (Ed.)Abstract DrugCentral is a public resource (http://drugcentral.org) that serves the scientific community by providing up-to-date drug information, as described in previous papers. The current release includes 109 newly approved (October 2018 through March 2020) active pharmaceutical ingredients in the US, Europe, Japan and other countries; and two molecular entities (e.g. mefuparib) of interest for COVID19. New additions include a set of pharmacokinetic properties for ∼1000 drugs, and a sex-based separation of side effects, processed from FAERS (FDA Adverse Event Reporting System); as well as a drug repositioning prioritization scheme based on the market availability and intellectual property rights forFDA approved drugs. In the context of the COVID19 pandemic, we also incorporated REDIAL-2020, a machine learning platform that estimates anti-SARS-CoV-2 activities, as well as the ‘drugs in news’ feature offers a brief enumeration of the most interesting drugs at the present moment. The full database dump and data files are available for download from the DrugCentral web portal.more » « less
An official website of the United States government

