skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions
Abstract MotivationAccurately predicting drug–target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks. ResultsInspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g. compound–protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning. Availability and implementationThe source code and data used in NeoDTI are available at: https://github.com/FangpingWan/NeoDTI. Supplementary informationSupplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1646333
PAR ID:
10393434
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
35
Issue:
1
ISSN:
1367-4803
Page Range / eLocation ID:
p. 104-111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationThe identification and understanding of drug–target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. ResultsLarge-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. Availability and implementationSource code is available at: https://github.com/compbiolabucf/DTI-LM. 
    more » « less
  2. Wren, Jonathan (Ed.)
    Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. Availability and implementation https://github.com/kexinhuang12345/DeepPurpose. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Drug–target affinity (DTA) prediction is a critical aspect of drug discovery. The meaningful representation of drugs and targets is crucial for accurate prediction. Using 1D string-based representations for drugs and targets is a common approach that has demonstrated good results in drug–target affinity prediction. However, these approach lacks information on the relative position of the atoms and bonds. To address this limitation, graph-based representations have been used to some extent. However, solely considering the structural aspect of drugs and targets may be insufficient for accurate DTA prediction. Integrating the functional aspect of these drugs at the genetic level can enhance the prediction capability of the models. To fill this gap, we propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets. We applied a Grammar Variational Autoencoder (GVAE) for drug feature extraction and utilized two different approaches for protein feature extraction as follows: a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN). The chemical perturbation data are obtained from the L1000 project, which provides information on the up-regulation and down-regulation of genes caused by selected drugs. This chemical perturbation information is processed, and a compact dataset is prepared, serving as the functional feature set of the drugs. By integrating the drug, gene, and target features in the model, our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets (BindingDB, Davis, and KIBA). This work provides a novel and practical approach to DTA prediction by merging the structural and functional aspects of biological entities, and it encourages further research in multi-modal DTA prediction. 
    more » « less
  4. Abstract Traditional techniques to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug target identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation protocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drugtarget interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through offtarget binding, and repositioning opportunities. 
    more » « less
  5. Lu, Zhiyong (Ed.)
    Abstract MotivationForecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy. ResultsWe present a novel deep hypergraph learning method named Heterogeneous Entity Representation for MEdicinal Synergy (HERMES) prediction to predict the synergistic effects of anti-cancer drugs. Heterogeneous data sources, including drug chemical structures, gene expression profiles, and disease clinical semantics, are integrated into hypergraph neural networks equipped with a gated residual mechanism to enhance high-order relationship modeling. HERMES demonstrates state-of-the-art performance on two benchmark datasets, significantly outperforming existing methods in predicting the synergistic effects of drug combinations, particularly in cases involving unseen drugs. Availability and implementationThe source code is available at https://github.com/Christina327/HERMES. 
    more » « less