skip to main content

Title: Modeling Dynamic Missingness of Implicit Feedback for Recommendation
Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are missing not at random (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn users’ negative preferences. Recent studies modeled exposure, a latent missingness variable which indicates whether an item is exposed to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be an essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named “user intent” to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of user intents. Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems.
Award ID(s):
Publication Date:
Journal Name:
Advances in neural information processing systems
Page Range or eLocation-ID:
6669 - 6678
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new time-dependent predictive model of user-item ratings centered around local coherence -- that is, while both users and items are constantly in flux, within a short-term sequence, the neighborhood of a particular user or item is likely to be coherent. Three unique characteristics of the framework are: (i) it incorporates both implicit and explicit feedbacks by extracting the local coherence hidden in the feedback sequences; (ii) it uses parallel recurrent neural networks to capture the evolution of users and items, resulting in a dual factor recommendation model; and (iii) it combines both coherence-enhanced consistent latent factors and dynamic latent factors to balance short-term changes with long-term trends for improved recommendation. Through experiments on Goodreads and Amazon, we find that the proposed model can outperform state-of-the-art models in predicting users' preferences.
  2. In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking.
  3. Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance themore »tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods.« less
  4. Latent factor models have become a prevalent method in recommender systems, to predict users' preference on items based on the historical user feedback. Most of the existing methods, explicitly or implicitly, are built upon the first-order rating distance principle, which aims to minimize the difference between the estimated and real ratings. In this paper, we generalize such first-order rating distance principle and propose a new latent factor model (HoORaYs) for recommender systems. The core idea of the proposed method is to explore high-order rating distance, which aims to minimize not only (i) the difference between the estimated and real ratings of the same (user, item) pair (i.e., the first-order rating distance), but also (ii) the difference between the estimated and real rating difference of the same user across different items (i.e., the second-order rating distance). We formulate it as a regularized optimization problem, and propose an effective and scalable algorithm to solve it. Our analysis from the geometry and Bayesian perspectives indicate that by exploring the high-order rating distance, it helps to reduce the variance of the estimator, which in turns leads to better generalization performance (e.g., smaller prediction error). We evaluate the proposed method on four real-world data sets,more »two with explicit user feedback and the other two with implicit user feedback. Experimental results show that the proposed method consistently outperforms the state-of-the-art methods in terms of the prediction accuracy.« less
  5. Existing learning to rank models for information retrieval are trained based on explicit or implicit query-document relevance information. In this paper, we study the task of learning a retrieval model based on user-item interactions. Our model has potential applications to the systems with rich user-item interaction data, such as browsing and recommendation, in which having an accurate search engine is desired. This includes media streaming services and e-commerce websites among others. Inspired by the neural approaches to collaborative filtering and the language modeling approaches to information retrieval, our model is jointly optimized to predict user-item interactions and reconstruct the item textual descriptions. In more details, our model learns user and item representations such that they can accurately predict future user-item interactions, while generating an effective unigram language model for each item. Our experiments on four diverse datasets in the context of movie and product search and recommendation demonstrate that our model substantially outperforms competitive retrieval baselines, in addition to providing comparable performance to state-of-the-art hybrid recommendation models.