skip to main content


Title: Blue Light Emitting Defective Nanocrystals Composed of Earth‐Abundant Elements
Abstract

Copper‐based ternary (I–III–VI) chalcogenide nanocrystals (NCs) are compositionally‐flexible semiconductors that do not contain lead (Pb) or cadmium (Cd). Cu‐In‐S NCs are the dominantly studied member of this important materials class and have been reported to contain optically‐active defect states. However, there are minimal reports of In‐free compositions that exhibit efficient photoluminescence (PL). Here, we report a novel solution‐phase synthesis of ≈4 nm defective nanocrystals (DNCs) composed of copper, aluminum, zinc, and sulfur with ≈20 % quantum yield and an attractive PL maximum of 450 nm. Extensive spectroscopic characterization suggests the presence of highly localized electronic states resulting in reasonably fast PL decays (≈1 ns), large vibrational energy spacing, small Stokes shift, and temperature‐independent PL linewidth and PL lifetime (between room temperature and ≈5 K). Furthermore, density functional theory (DFT) calculations suggest PL transitions arise from defects within a CuAl5S8crystal lattice, which supports the experimental observation of highly‐localized states. The results reported here provide a new material with unique optoelectronic characteristics that is an important analog to well‐explored Cu‐In‐S NCs.

 
more » « less
NSF-PAR ID:
10126260
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
2
ISSN:
0044-8249
Page Range / eLocation ID:
p. 870-877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Copper‐based ternary (I–III–VI) chalcogenide nanocrystals (NCs) are compositionally‐flexible semiconductors that do not contain lead (Pb) or cadmium (Cd). Cu‐In‐S NCs are the dominantly studied member of this important materials class and have been reported to contain optically‐active defect states. However, there are minimal reports of In‐free compositions that exhibit efficient photoluminescence (PL). Here, we report a novel solution‐phase synthesis of ≈4 nm defective nanocrystals (DNCs) composed of copper, aluminum, zinc, and sulfur with ≈20 % quantum yield and an attractive PL maximum of 450 nm. Extensive spectroscopic characterization suggests the presence of highly localized electronic states resulting in reasonably fast PL decays (≈1 ns), large vibrational energy spacing, small Stokes shift, and temperature‐independent PL linewidth and PL lifetime (between room temperature and ≈5 K). Furthermore, density functional theory (DFT) calculations suggest PL transitions arise from defects within a CuAl5S8crystal lattice, which supports the experimental observation of highly‐localized states. The results reported here provide a new material with unique optoelectronic characteristics that is an important analog to well‐explored Cu‐In‐S NCs.

     
    more » « less
  2. Abstract

    Persistent luminescent nanocrystals (PLNCs) in the sub‐10 nm domain are considered to be the most fascinating inventions in lighting technology owing to their excellent performance in anti‐counterfeiting, luminous paints, bioimaging, security applications, etc. Further improvement of persistent luminescence (PersL) intensity and lifetime is needed to achieve the desired success of PLNCs while keeping the uniform sub‐10 nm size. In this work, the concept of molten salt confinement to thermally anneal as‐synthesized ZnGa2O4:Cr3+(ZGOC) colloidal NCs (CNCs) in a molten salt medium at 650 °C is introduced. This method led to significantly monodispersed and few agglomerated NCs with a much improved photoluminescence (PL) and PersL intensity without much growth in the size of the pristine CNCs. Other strategies such as i) thermal annealing, ii) overcoating, and iii) the core–shell strategy have also been tried to improve PL and PersL but did not improve them simultaneously. Moreover, directly annealing the CNCs in air without the assistance of molten salt could significantly improve both PL and PersL but led to particle heterogeneity and aggregation, which are highly unsuitable for in vivo imaging. We believe this work provides a novel strategy to design PLNCs with high PL intensity and long PersL duration without losing their nanostructural characteristics, water dispersibility and biocompatibility.

     
    more » « less
  3. Abstract

    The search for ion‐conductive solid electrolytes for Li+batteries is an important scientific and technological challenge with economic and sustainable energy implications. In this study, nanocrystals (NCs) of the ion conductor copper selenide (Cu2−ySe) were doped with Li by the process of cation exchange. Li2xCu2−2xSe alloy NCs were formed at intermediate stages of the reaction, which was followed by phase segregation into Li2Se and Cu2Se domains. Li‐doped Cu2−ySe NCs and Li2Se NCs exhibit a possible SI phase at moderately elevated temperatures and warrant further ion‐conductance tests. These findings may guide the design of nanostructured super‐ionic electrolytes for Li+transport.

     
    more » « less
  4. Abstract

    The search for ion‐conductive solid electrolytes for Li+batteries is an important scientific and technological challenge with economic and sustainable energy implications. In this study, nanocrystals (NCs) of the ion conductor copper selenide (Cu2−ySe) were doped with Li by the process of cation exchange. Li2xCu2−2xSe alloy NCs were formed at intermediate stages of the reaction, which was followed by phase segregation into Li2Se and Cu2Se domains. Li‐doped Cu2−ySe NCs and Li2Se NCs exhibit a possible SI phase at moderately elevated temperatures and warrant further ion‐conductance tests. These findings may guide the design of nanostructured super‐ionic electrolytes for Li+transport.

     
    more » « less
  5. Abstract

    Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.

     
    more » « less