Abstract Blue electroluminescence is highly desired for emerging light‐emitting devices for display applications and optoelectronics in general. However, saturated, efficient, and stable blue emission has been challenging to achieve, particularly in mixed‐halide perovskites, where intrinsic ion motion and halide segregation compromises spectral purity. Here, CsPbBr3−xClxperovskites, polyelectrolytes, and a salt additive are leveraged to demonstrate pure blue emission from single‐layer light‐emitting electrochemical cells (LECs). The electrolytes transport the ions from salt additives, enhancing charge injection and stabilizing the inherent perovskite emissive lattice for highly pure and sustained blue emission. Substituting Cl into CsPbBr3tunes the perovskite luminescence from green through blue. Sky blue and saturated blue devices produce International Commission on Illumination coordinates of (0.105, 0.129) and (0.136, 0.068), respectively, with the latter meeting the US National Television Committee standard for the blue primary. Likewise, maximum luminances of 2900 and 1000 cd m−2, external quantum efficiencies (EQEs) of 4.3% and 3.9%, and luminance half‐lives of 5.7 and 4.9 h are obtained for sky blue and saturated blue devices, respectively. Polymer and LiPF6inclusion increases photoluminescence efficiency, suppresses halide segregation, induces thin‐film smoothness and uniformity, and reduces crystallite size. Overall, these devices show superior performance among blue perovskite light‐emitting diodes (PeLEDs) and general LECs.
more »
« less
Efficient and Stable Blue Light Emitting Diodes Based on CsPbBr 3 Nanoplatelets with Surface Passivation by a Multifunctional Organic Sulfate
Abstract Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.
more »
« less
- PAR ID:
- 10442067
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 13
- Issue:
- 33
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%.more » « less
-
Abstract Achieving efficient and stable blue light‐emitting perovskite nanocrystals is a significant challenge for next‐generation optoelectronic devices. Here, a dual‐ligand surface engineering strategy is reported for quasi‐2D CsPbBr3nanoplatelets (NPLs) synthesized via ligand‐assisted reprecipitation. By synergistically co‐introducing didodecyldimethylammonium bromide to passivate bromine vacancies and hexylphosphonic acid to bind undercoordinated lead ions, the NPLs achieved a remarkable photoluminescence quantum yield of 93.7% and a narrow full‐width at half‐maximum of 19.27 nm. The enhanced photoluminescence (PL) lifetime (6.35 ns), reduced crystal disorder, slower bleach recovery kinetics, and improved thermal stability suggest that the suppressed non‐radiative pathways and strong exciton confinement (Eb = 141.76 meV) result from effective surface defect passivation and enhanced radiative recombination. Additionally, surface and structural characterizations confirmed the successful dual‐ligand integration and improved crystal integrity. The treated NPLs retained ∼57% PL under 450 min of ultraviolet (UV) light and ∼55% PL under 70% relative humidity, demonstrating strong UV and moisture stability. A prototype white light‐emitting device fabricated by integrating dual‐ligand‐treated NPLs achieves a wide color gamut (121% National Television System Committee, 90.4% ITU‐R Recommendation BT.2020), demonstrating their potential for high‐performance optoelectronics. This approach promotes defect suppression in low‐dimensional perovskites, paving the way for stable and efficient blue emitters.more » « less
-
Abstract Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near‐unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium antimony bromide (TPPcarzSbBr4), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+) and light emitting antimony bromide anions (Sb2Br82−), is reported. By replacing one of the phenyl groups in a well‐known tetraphenylphosphonium cation (TPP+) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+cation is developed for the preparation of red emitting 0D TPPcarzSbBr4single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m−2, and a current efficiency of 14.2 cd A−1, which are the best values reported to date for electroluminescence devices based on 0D OMHHs.more » « less
-
Abstract The all‐inorganic metal halide perovskite CsPbX3(X = Cl, Br, and I) has received extensive attention in the field of white light‐emitting diodes (WLEDs) due to its high luminous intensity and high color purity. However, the shortcoming of poor stability directly affects the luminous performance of the WLED devices and reduces their luminous efficiency, which has become an urgent problem to be solved. Here, three‐color lead halide perovskite phosphors (blue‐emitting CsPbBr3synthesized at 20 °C (CPB‐20), green‐emitting CsPbBr3‐80 (CPB‐80)/CsPbBr3:SCN−(CPB:SCN−), and red‐emitting PEA2PbBr4(PPB)/PEA2PbBr4:Mn2+(PPB:Mn2+)) with higher stability and luminous intensity are simultaneously prepared and applied in WLEDs. Density functional theory is used to optimize the structures of CsPbBr3and PEA2PbBr4, and to calculate the work function, optical properties, and charge density difference. Not only the WLED devices with three‐color lead halide perovskite phosphors are constructed, but also WLED devices from warm white to cold white are realized by tuning the ratio of the different emissions, and a superior color quality (color rendering index of 96) and ideal correlated color temperature (CCT of 9376 K) are achieved. This work will set the stage for exploring low‐cost, environmentally friendly, high‐performance WLEDs.more » « less
An official website of the United States government
