skip to main content


Title: Achieving Causal Fairness through Generative Adversarial Networks

Achieving fairness in learning models is currently an imperative task in machine learning. Meanwhile, recent research showed that fairness should be studied from the causal perspective, and proposed a number of fairness criteria based on Pearl's causal modeling framework. In this paper, we investigate the problem of building causal fairness-aware generative adversarial networks (CFGAN), which can learn a close distribution from a given dataset, while also ensuring various causal fairness criteria based on a given causal graph. CFGAN adopts two generators, whose structures are purposefully designed to reflect the structures of causal graph and interventional graph. Therefore, the two generators can respectively simulate the underlying causal model that generates the real data, as well as the causal model after the intervention. On the other hand, two discriminators are used for producing a close-to-real distribution, as well as for achieving various fairness criteria based on causal quantities simulated by generators. Experiments on a real-world dataset show that CFGAN can generate high quality fair data.

 
more » « less
Award ID(s):
1646654 1564250 1841119
NSF-PAR ID:
10126320
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
1452 to 1458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent years have witnessed the pivotal role of Graph Neural Networks (GNNs) in various high-stake decision-making scenarios due to their superior learning capability. Close on the heels of the successful adoption of GNNs in different application domains has been the increasing societal concern that conventional GNNs often do not have fairness considerations. Although some research progress has been made to improve the fairness of GNNs, these works mainly focus on the notion of group fairness regarding different subgroups defined by a protected attribute such as gender, age, and race. Beyond that, it is also essential to study the GNN fairness at a much finer granularity (i.e., at the node level) to ensure that GNNs render similar prediction results for similar individuals to achieve the notion of individual fairness. Toward this goal, in this paper, we make an initial investigation to enhance the individual fairness of GNNs and propose a novel ranking based framework---REDRESS. Specifically, we refine the notion of individual fairness from a ranking perspective, and formulate the ranking based individual fairness promotion problem. This naturally addresses the issue of Lipschitz constant specification and distance calibration resulted from the Lipschitz condition in the conventional individual fairness definition. Our proposed framework REDRESS encapsulates the GNN model utility maximization and the ranking-based individual fairness promotion in a joint framework to enable end-to-end training. It is noteworthy mentioning that REDRESS is a plug-and-play framework and can be easily generalized to any prevalent GNN architectures. Extensive experiments on multiple real-world graphs demonstrate the superiority of REDRESS in achieving a good balance between model utility maximization and individual fairness promotion. Our open source code can be found here: https://github.com/yushundong/REDRESS. 
    more » « less
  2. null (Ed.)
    We study fairness in supervised few-shot meta-learning models that are sensitive to discrimination (or bias) in historical data. A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups. Although this problem has been studied before, existing methods mainly aim to detect and control the dependency effect of the protected variables (e.g. race, gender) on target prediction based on a large amount of training data. These approaches carry two major drawbacks that (1) lacking showing a global cause-effect visualization for all variables; (2) lacking generalization of both accuracy and fairness to unseen tasks. In this work, we first discover discrimination from data using a causal Bayesian knowledge graph which not only demonstrates the dependency of the protected variable on target but also indicates causal effects between all variables. Next, we develop a novel algorithm based on risk difference in order to quantify the discriminatory influence for each protected variable in the graph. Furthermore, to protect prediction from unfairness, a the fast-adapted bias-control approach in meta-learning is proposed, which efficiently mitigates statistical disparity for each task and it thus ensures independence of protected attributes on predictions based on biased and few-shot data samples. Distinct from existing meta-learning models, group unfairness of tasks are efficiently reduced by leveraging the mean difference between (un)protected groups for regression problems. Through extensive experiments on both synthetic and real-world data sets, we demonstrate that our proposed unfairness discovery and prevention approaches efficiently detect discrimination and mitigate biases on model output as well as generalize both accuracy and fairness to unseen tasks with a limited amount of training samples. 
    more » « less
  3. With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability. 
    more » « less
  4. Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real-world dataset show the effectiveness of our approaches. 
    more » « less
  5. Methicillin-resistant Staphylococcus aureus (MRSA) is a type of bacteria resistant to certain antibiotics, making it difficult to prevent MRSA infections. Among decades of efforts to conquer infectious diseases caused by MRSA, many studies have been proposed to estimate the causal effects of close contact (treatment) on MRSA infection (outcome) from observational data. In this problem, the treatment assignment mechanism plays a key role as it determines the patterns of missing counterfactuals -- the fundamental challenge of causal effect estimation. Most existing observational studies for causal effect learning assume that the treatment is assigned individually for each unit. However, on many occasions, the treatments are pairwisely assigned for units that are connected in graphs, i.e., the treatments of different units are entangled. Neglecting the entangled treatments can impede the causal effect estimation. In this paper, we study the problem of causal effect estimation with treatment entangled in a graph. Despite a few explorations for entangled treatments, this problem still remains challenging due to the following challenges: (1) the entanglement brings difficulties in modeling and leveraging the unknown treatment assignment mechanism; (2) there may exist hidden confounders which lead to confounding biases in causal effect estimation; (3) the observational data is often time-varying. To tackle these challenges, we propose a novel method NEAT, which explicitly leverages the graph structure to model the treatment assignment mechanism, and mitigates confounding biases based on the treatment assignment modeling. We also extend our method into a dynamic setting to handle time-varying observational data. Experiments on both synthetic datasets and a real-world MRSA dataset validate the effectiveness of the proposed method, and provide insights for future applications. 
    more » « less