skip to main content


Title: D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling Algorithmic Bias
With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability.  more » « less
Award ID(s):
1900706
NSF-PAR ID:
10430780
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    AI fairness is tasked with evaluating and mitigating bias in algorithms that may discriminate towards protected groups. This paper examines if bias exists in AI algorithms used in disaster management and in what manner. We consider the 2017 Hurricane Harvey when flood victims in Houston resorted to social media to request for rescue. We evaluate a Random Forest regression model trained to predict Twitter rescue request rates from social-environmental data using three fairness criteria (independence, separation, and sufficiency). The Social Vulnerability Index (SVI), its four sub-indices, and four variables representing digital divide were considered sensitive attributes. The Random Forest regression model extracted seven significant predictors of rescue request rates, and from high to low importance they were percent of renter occupied housing units, percent of roads in flood zone, percent of flood zone area, percent of wetland cover, percent of herbaceous, forested and shrub cover, mean elevation, and percent of households with no computer or device. Partial Dependence plots of rescue request rates against each of the seven predictors show the non-linear nature of their relationships. Results of the fairness evaluation of the Random Forest model using the three criteria show no obvious biases for the nine sensitive attributes, except that a minor imperfect sufficiency was found with the SVI Housing and Transportation sub-index. Future AI modeling in disaster research could apply the same methodology used in this paper to evaluate fairness and help reduce unfair resource allocation and other social and geographical disparities.

     
    more » « less
  2. We describe customized synthetic datasets for publishing mobility data. Private companies are providing new transportation modalities, and their data is of high value for integrative transportation research, policy enforcement, and public accountability. However, these companies are disincentivized from sharing data not only to protect the privacy of individuals (drivers and/or passengers), but also to protect their own competitive advantage. Moreover, demographic biases arising from how the services are delivered may be amplified if released data is used in other contexts. We describe a model and algorithm for releasing origin-destination histograms that removes selected biases in the data using causality-based methods. We compute the origin-destination histogram of the original dataset then adjust the counts to remove undesirable causal relationships that can lead to discrimination or violate contractual obligations with data owners. We evaluate the utility of the algorithm on real data from a dockless bike share program in Seattle and taxi data in New York, and show that these adjusted transportation datasets can retain utility while removing bias in the underlying data. 
    more » « less
  3. Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g., along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we examine the challenges which arise when humans and fair AI interact. Our results show that due to an apparent conflict between human preferences and fairness, a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using college major recommendation as a case study, we build a fair AI recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy in prediction. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans. We conducted a follow-up survey to gain additional insights into the effectiveness of various design options that can help participants to overcome their own biases. Our results suggest that making fair AI explainable is crucial for increasing its adoption in the real world. 
    more » « less
  4. While implicit feedback (e.g., clicks, dwell times, etc.) is an abundant and attractive source of data for learning to rank, it can produce unfair ranking policies for both exogenous and endogenous reasons. Exogenous reasons typically manifest themselves as biases in the training data, which then get reflected in the learned ranking policy and often lead to rich-get-richer dynamics. Moreover, even after the correction of such biases, reasons endogenous to the design of the learning algorithm can still lead to ranking policies that do not allocate exposure among items in a fair way. To address both exogenous and endogenous sources of unfairness, we present the first learning-to-rank approach that addresses both presentation bias and merit-based fairness of exposure simultaneously. Specifically, we define a class of amortized fairness-of-exposure constraints that can be chosen based on the needs of an application, and we show how these fairness criteria can be enforced despite the selection biases in implicit feedback data. The key result is an efficient and flexible policy-gradient algorithm, called FULTR, which is the first to enable the use of counterfactual estimators for both utility estimation and fairness constraints. Beyond the theoretical justification of the framework, we show empirically that the proposed algorithm can learn accurate and fair ranking policies from biased and noisy feedback. 
    more » « less
  5. Data-driven algorithms are only as good as the data they work with, while datasets, especially social data, often fail to represent minorities adequately. Representation Bias in data can happen due to various reasons, ranging from historical discrimination to selection and sampling biases in the data acquisition and preparation methods. Given that “bias in, bias out,” one cannot expect AI-based solutions to have equitable outcomes for societal applications, without addressing issues such as representation bias. While there has been extensive study of fairness in machine learning models, including several review papers, bias in the data has been less studied. This article reviews the literature on identifying and resolving representation bias as a feature of a dataset, independent of how consumed later. The scope of this survey is bounded to structured (tabular) and unstructured (e.g., image, text, graph) data. It presents taxonomies to categorize the studied techniques based on multiple design dimensions and provides a side-by-side comparison of their properties. There is still a long way to fully address representation bias issues in data. The authors hope that this survey motivates researchers to approach these challenges in the future by observing existing work within their respective domains. 
    more » « less