Abstract Let u u be a nontrivial harmonic function in a domain D ⊂ R d D\subset {{\mathbb{R}}}^{d} , which vanishes on an open set of the boundary. In a recent article, we showed that if D D is a C 1 {C}^{1} -Dini domain, then, within the open set, the singular set of u u , defined as { X ∈ D ¯ : u ( X ) = 0 = ∣ ∇ u ( X ) ∣ } \left\{X\in \overline{D}:u\left(X)=0=| \nabla u\left(X)| \right\} , has finite ( d − 2 ) \left(d-2) -dimensional Hausdorff measure. In this article, we show that the assumption of C 1 {C}^{1} -Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose singular sets have infinite ℋ d − 2 {{\mathcal{ {\mathcal H} }}}^{d-2} -measures.
more »
« less
Bergman-Harmonic Functions on Classical Domains
Abstract We study Bergman-harmonic functions on classical domains from a new point of view in this paper. We first establish a boundary pluriharmonicity result for Bergman-harmonic functions on classical domains: a Bergman-harmonic function $$u$$ on a classical domain $$D$$ must be pluriharmonic on germs of complex manifolds in the boundary of $$D$$ if $$u$$ has some appropriate boundary regularity. Next we give a new characterization of pluriharmonicity on classical domains which may shed a new light on future study of Bergman-harmonic functions. We also prove characterization results for Bergman-harmonic functions on type I domains.
more »
« less
- Award ID(s):
- 1800549
- PAR ID:
- 10126423
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kefeng Liu (Ed.)We establish results on unique continuation at the boundary for the solutions of ∆u = f, f harmonic, and the biharmonic equation ∆^2u = 0. The work is motivated by analogous results proved for harmonic functions by X. Huang et al in [HK1], [HK2], and [HKMP] and by M. S. Baouendi and L. P. Rothschild in [BR1] and [BR2].more » « less
-
Kefeng Liu (Ed.)We establish results on unique continuation at the boundary for the solutions of ∆u = f, f harmonic, and the biharmonic equation ∆^2u = 0. The work is motivated by analogous results proved for harmonic functions by X. Huang et al in [HK1], [HK2], and [HKMP] and by M. S. Baouendi and L. P. Rothschild in [BR1] and [BR2].more » « less
-
For $$1<\infty$$, we emulate the Bergman projection on Reinhardt domains by using a Banach-space basis of $L^p$-Bergman space. The construction gives an integral kernel generalizing the ($L^2$) Bergman kernel. The operator defined by the kernel is shown to be an absolutely bounded projection on the $L^p$-Bergman space on a class of domains where the $L^p$-boundedness of the Bergman projection fails for certain $$p \neq 2$$. As an application, we identify the duals of these $L^p$-Bergman spaces with weighted Bergman spaces.more » « less
-
Abstract The 4 N {4N} -carpets are a class of infinitely ramified self-similar fractals with a large group of symmetries. For a 4 N {4N} -carpet F , let { F n } n ≥ 0 {\{F_{n}\}_{n\geq 0}} be the natural decreasing sequence of compact pre-fractal approximations with ⋂ n F n = F {\bigcap_{n}F_{n}=F} . On each F n {F_{n}} , let ℰ ( u , v ) = ∫ F N ∇ u ⋅ ∇ v d x {\mathcal{E}(u,v)=\int_{F_{N}}\nabla u\cdot\nabla v\,dx} be the classical Dirichlet form and u n {u_{n}} be the unique harmonic function on F n {F_{n}} satisfying a mixed boundary value problem corresponding to assigning a constant potential between two specific subsets of the boundary. Using a method introduced by [M. T. Barlow and R. F. Bass,On the resistance of the Sierpiński carpet, Proc. Roy. Soc. Lond. Ser. A 431 (1990), no. 1882, 345–360], we prove a resistance estimate of the following form: there is ρ = ρ ( N ) > 1 {\rho=\rho(N)>1} such that ℰ ( u n , u n ) ρ n {\mathcal{E}(u_{n},u_{n})\rho^{n}} is bounded above and below by constants independent of n . Such estimates have implications for the existence and scaling properties of Brownian motion on F .more » « less
An official website of the United States government
