skip to main content


Search for: All records

Award ID contains: 1800549

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We study Bergman-harmonic functions on classical domains from a new point of view in this paper. We first establish a boundary pluriharmonicity result for Bergman-harmonic functions on classical domains: a Bergman-harmonic function $u$ on a classical domain $D$ must be pluriharmonic on germs of complex manifolds in the boundary of $D$ if $u$ has some appropriate boundary regularity. Next we give a new characterization of pluriharmonicity on classical domains which may shed a new light on future study of Bergman-harmonic functions. We also prove characterization results for Bergman-harmonic functions on type I domains.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. In this paper, we first study a mapping problem between indefinite hyperbolic spaces by employing the work established earlier by the authors. In particular, we generalize certain theorems proved by Baouendi-Ebenfelt-Huang [Amer. J. Math. 133 (2011), pp. 1633–1661] and Ng [Michigan Math. J. 62 (2013), pp. 769–777; Int. Math. Res. Not. IMRN 2 (2015), pp. 291–324]. Then we use these results to prove a rigidity result for proper holomorphic mappings between type I classical domains, which confirms a conjecture formulated by Chan [Int. Math. Res. Not., doi.org/10.1093/imrn/rnaa373] after the work of Zaitsev-Kim [Math. Ann. 362 (2015), pp. 639-677], Kim [ Proper holomorphic maps between bounded symmetric domains , Springer, Tokyo, 2015, pp. 207–219] and himself. 
    more » « less
  4. Abstract The first part of the paper studies the boundary behavior of holomorphic isometric mappings F = ( F 1 , … , F m ) {F=(F_{1},\dots,F_{m})} from the complex unit ball 𝔹 n {\mathbb{B}^{n}} , n ≥ 2 {n\geq 2} , to a bounded symmetric domain Ω = Ω 1 × ⋯ × Ω m {\Omega=\Omega_{1}\times\cdots\times\Omega_{m}} up to constant conformal factors, where Ω i ′ {\Omega_{i}^{\prime}} s are irreducible factors of Ω. We prove every non-constant component F i {F_{i}} must map generic boundary points of 𝔹 n {\mathbb{B}^{n}} to the boundary of Ω i {\Omega_{i}} . In the second part of the paper, we establish a rigidity result for local holomorphic isometric maps from the unit ball to aproduct of unit balls and Lie balls. 
    more » « less
  5. null (Ed.)
    Abstract We study the Bergman metric of a finite ball quotient $\mathbb{B}^n/\Gamma $, where $n \geq 2$ and $\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $\Gamma $ is trivial, that is, when the ball quotient $\mathbb{B}^n/\Gamma $ is the unit ball ${\mathbb{B}}^n$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Abstract We give an affirmative solution to a conjecture of Cheng proposed in 1979which asserts that the Bergman metric of a smoothly bounded stronglypseudoconvex domain in {\mathbb{C}^{n},n\geq 2} , is Kähler–Einsteinif and only if the domain is biholomorphic to the ball. We establisha version of the classical Kerner theorem for Stein spaces withisolated singularities which has an immediate application toconstruct a hyperbolic metric over a Stein space with a sphericalboundary. 
    more » « less