skip to main content

Title: ATP: Directed Graph Embedding with Asymmetric Transitivity Preservation
Directed graphs have been widely used in Community Question Answering services (CQAs) to model asymmetric relationships among different types of nodes in CQA graphs, e.g., question, answer, user. Asymmetric transitivity is an essential property of directed graphs, since it can play an important role in downstream graph inference and analysis. Question difficulty and user expertise follow the characteristic of asymmetric transitivity. Maintaining such properties, while reducing the graph to a lower dimensional vector embedding space, has been the focus of much recent research. In this paper, we tackle the challenge of directed graph embedding with asymmetric transitivity preservation and then leverage the proposed embedding method to solve a fundamental task in CQAs: how to appropriately route and assign newly posted questions to users with the suitable expertise and interest in CQAs. The technique incorporates graph hierarchy and reachability information naturally by relying on a nonlinear transformation that operates on the core reachability and implicit hierarchy within such graphs. Subsequently, the methodology levers a factorization-based approach to generate two embedding vectors for each node within the graph, to capture the asymmetric transitivity. Extensive experiments show that our framework consistently and significantly outperforms the state-of-the-art baselines on three diverse realworld tasks: link more » prediction, and question difficulty estimation and expert finding in online forums like Stack Exchange. Particularly, our framework can support inductive embedding learning for newly posted questions (unseen nodes during training), and therefore can properly route and assign these kinds of questions to experts in CQAs. « less
; ; ; ; ;
Award ID(s):
1747447 1645599
Publication Date:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Page Range or eLocation-ID:
265 to 272
Sponsoring Org:
National Science Foundation
More Like this
  1. Logical queries constitute an important subset of questions posed in knowledge graph question answering systems. Yet, effectively answering logical queries on large knowledge graphs remains a highly challenging problem. Traditional subgraph matching based methods might suffer from the noise and incompleteness of the underlying knowledge graph, often with a prolonged online response time. Recently, an alternative type of method has emerged whose key idea is to embed knowledge graph entities and the query in an embedding space so that the embedding of answer entities is close to that of the query. Compared with subgraph matching based methods, it can bettermore »handle the noisy or missing information in knowledge graph, with a faster online response. Promising as it might be, several fundamental limitations still exist, including the linear transformation assumption for modeling relations and the inability to answer complex queries with multiple variable nodes. In this paper, we propose an embedding based method (NewLook) to address these limitations. Our proposed method offers three major advantages. First (Applicability), it supports four types of logical operations and can answer queries with multiple variable nodes. Second (Effectiveness), the proposed NewLook goes beyond the linear transformation assumption, and thus consistently outperforms the existing methods. Third (Efficiency), compared with subgraph matching based methods, NewLook is at least 3 times faster in answering the queries; compared with the existing embed-ding based methods, NewLook bears a comparable or even faster online response and offline training time.« less
  2. Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is tomore »leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principle to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering.« less
  3. Recently, considerable research attention has been paid to graph embedding, a popular approach to construct representations of vertices in latent space. Due to the curse of dimensionality and sparsity in graphical datasets, this approach has become indispensable for machine learning tasks over large networks. The majority of the existing literature has considered this technique under the assumption that the network is static. However, networks in many applications, including social networks, collaboration networks, and recommender systems, nodes, and edges accrue to a growing network as streaming. A small number of very recent results have addressed the problem of embedding for dynamicmore »networks. However, they either rely on knowledge of vertex attributes, su er high-time complexity or need to be re-trained without closed-form expression. Thus the approach of adapting the existing methods designed for static networks or dynamic networks to the streaming environment faces non-trivial technical challenges. These challenges motivate developing new approaches to the problems of streaming graph embedding. In this paper, we propose a new framework that is able to generate latent representations for new vertices with high e ciency and low complexity under speci ed iteration rounds. We formulate a constrained optimiza- tion problem for the modi cation of the representation resulting from a stream arrival. We show this problem has no closed-form solution and instead develop an online approximation solution. Our solution follows three steps: (1) identify vertices a ected by newly arrived ones, (2) generating latent features for new vertices, and (3) updating the latent features of the most a ected vertices. The new representations are guaranteed to be feasible in the original constrained optimization problem. Meanwhile, the solution only brings about a small change to existing representations and only slightly changes the value of the objective function. Multi-class clas- si cation and clustering on ve real-world networks demonstrate that our model can e ciently update vertex representations and simultaneously achieve comparable or even better performance compared with model retraining.« less
  4. Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence ofmore »attributed graphs. It has a temporal self-attention architecture to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs.« less
  5. Statistical inference for exponential-family models of random graphs with dependent edges is challenging. We stress the importance of additional structure and show that additional structure facilitates statistical inference. A simple example of a random graph with additional structure is a random graph with neighborhoods and local dependence within neighborhoods. We develop the first concentration and consistency results for maximum likelihood and M-estimators of a wide range of canonical and curved exponentialfamily models of random graphs with local dependence. All results are nonasymptotic and applicable to random graphs with finite populations of nodes, although asymptotic consistency results can be obtained asmore »well. In addition, we show that additional structure can facilitate subgraph-to-graph estimation, and present concentration results for subgraph-to-graph estimators. As an application, we consider popular curved exponential-family models of random graphs, with local dependence induced by transitivity and parameter vectors whose dimensions depend on the number of nodes.« less