This paper considers the Byzantine consensus problem for nodes with binary inputs. The nodes are interconnected by a network represented as an undirected graph, and the system is assumed to be synchronous. Under the classical pointtopoint communication model, it is wellknown that the following two conditions are both necessary and sufficient to achieve Byzantine consensus among n nodes in the presence of up to ƒ Byzantine faulty nodes: n & 3 #8805; 3 ≥ ƒ+ 1 and vertex connectivity at least 2 ƒ + 1. In the classical pointtopoint communication model, it is possible for a faulty node to equivocate, i.e., transmit conflicting information to different neighbors. Such equivocation is possible because messages sent by a node to one of its neighbors are not overheard by other neighbors. This paper considers the local broadcast model. In contrast to the pointtopoint communication model, in the local broadcast model, messages sent by a node are received identically by all of its neighbors. Thus, under the local broadcast model, attempts by a node to send conflicting information can be detected by its neighbors. Under this model, we show that the following two conditions are both necessary and sufficient for Byzantine consensus: vertex connectivitymore »
Exact Byzantine Consensus on Arbitrary Directed Graphs Under Local Broadcast Model
We consider Byzantine consensus in a synchronous system where nodes are connected by a network modeled as a directed graph, i.e., communication links between neighboring nodes are not necessarily bidirectional. The directed graph model is motivated by wireless networks wherein asymmetric communication links can occur. In the classical pointtopoint communication model, a message sent on a communication link is private between the two nodes on the link. This allows a Byzantine faulty node to equivocate, i.e., send inconsistent information to its neighbors. This paper considers the local broadcast model of communication, wherein transmission by a node is received identically by all of its outgoing neighbors, effectively depriving the faulty nodes of the ability to equivocate. Prior work has obtained sufficient and necessary conditions on undirected graphs to be able to achieve Byzantine consensus under the local broadcast model. In this paper, we obtain tight conditions on directed graphs to be able to achieve Byzantine consensus with binary inputs under the local broadcast model. The results obtained in the paper provide insights into the tradeoff between directionality of communication links and the ability to achieve consensus.
 Award ID(s):
 1733872
 Publication Date:
 NSFPAR ID:
 10184840
 Journal Name:
 International Conference on Principles of Distributed Systems
 Sponsoring Org:
 National Science Foundation
More Like this


Gilbert, Seth (Ed.)Byzantine consensus is a classical problem in distributed computing. Each node in a synchronous system starts with a binary input. The goal is to reach agreement in the presence of Byzantine faulty nodes. We consider the setting where communication between nodes is modelled via an undirected communication graph. In the classical pointtopoint communication model all messages sent on an edge are private between the two endpoints of the edge. This allows a faulty node to equivocate, i.e., lie differently to its different neighbors. Different models have been proposed in the literature that weaken equivocation. In the local broadcast model, every message transmitted by a node is received identically and correctly by all of its neighbors. In the hypergraph model, every message transmitted by a node on a hyperedge is received identically and correctly by all nodes on the hyperedge. Tight network conditions are known for each of the three cases. We introduce a more general model that encompasses all three of these models. In the local multicast model, each node u has one or more local multicast channels. Each channel consists of multiple neighbors of u in the communication graph. When node u sends a message on a channel, itmore »

Jurdziński, T ; Schmid, S (Ed.)In the multiparty equality problem, each of the n nodes starts with a kbit input. If there is a mismatch between the inputs, then at least one node must be able to detect it. The cost of a multiparty equality protocol is the total number of bits sent in the protocol. We consider the problem of minimizing this communication cost under the local broadcast model for the case where the underlying communication graph is undirected. In the local broadcast model of communication, a message sent by a node is received identically by all of its neighbors. This is in contrast to the classical pointtopoint communication model, where a message sent by a node to one of its neighbors is received only by its intended recipient. Under pointtopoint communication, there exists a simple protocol which is competitive within a factor 2 of the lower bound [1]. In this protocol, a rooted spanning tree is fixed and each node sends its entire input to its parent in the tree. On receiving a value from its child, a node compares it against its own input to check if the two values match. Ignoring lower order additive terms, a more complicated protocol comes withinmore »

Filter banks on graphs are shown to be useful for analyzing data defined over networks, as they decompose a graph signal into components with low variation and high variation. Based on recent nodeasynchronous implementation of graph filters, this study proposes an asynchronous implementation of filter banks on graphs. In the proposed algorithm nodes follow a randomized collectcomputebroadcast scheme: if a node is in the passive stage it collects the data sent by its incoming neighbors and stores only the most recent data. When a node gets into the active stage at a random time instance, it does the necessary filtering computations locally, and broadcasts a state vector to its outgoing neighbors. When the underlying filters (of the filter bank) are rational functions with the same denominator, the proposed filter bank implementation does not require additional communication between the neighboring nodes. However, computations done by a node increase linearly with the number of filters in the bank. It is also proven that the proposed asynchronous implementation converges to the desired output of the filter bank in the meansquared sense under mild stability conditions. The convergence is verified also with numerical experiments.

This paper focuses on showing timemessage tradeoffs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors  the socalled KT_1 model  a wellstudied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph  called a danner  that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is amore »