skip to main content


Title: The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient
Abstract. A critical component of hydrologic modeling in cold andtemperate regions is partitioning precipitation into snow and rain, yetlittle is known about how uncertainty in precipitation phase propagates intovariability in simulated snow accumulation and melt. Given the wide varietyof methods for distinguishing between snow and rain, it is imperative toevaluate the sensitivity of snowpack model output to precipitation phasedetermination methods, especially considering the potential of snow-to-rainshifts associated with climate warming to fundamentally change the hydrologyof snow-dominated areas. To address these needs we quantified thesensitivity of simulated snow accumulation and melt to rain–snowpartitioning methods at sites in the western United States using theSNOWPACK model without the canopy module activated. The methods in thisstudy included different permutations of air, wet bulb and dew pointtemperature thresholds, air temperature ranges, and binary logisticregression models. Compared to observations of snow depth and snow water equivalent (SWE), thebinary logistic regression models produced the lowest mean biases, whilehigh and low air temperature thresholds tended to overpredict andunderpredict snow accumulation, respectively. Relative differences betweenthe minimum and maximum annual snowfall fractions predicted by the differentmethods sometimes exceeded 100 % at elevations less than 2000 m in theOregon Cascades and California's Sierra Nevada. This led to rangesin annual peak SWE typically greater than 200 mm,exceeding 400 mm in certain years. At the warmer sites, ranges in snowmelttiming predicted by the different methods were generally larger than 2 weeks, while ranges in snow cover duration approached 1 month and greater.Conversely, the three coldest sites in this work were relatively insensitiveto the choice of a precipitation phase method, with average ranges in annualsnowfall fraction, peak SWE, snowmelt timing, and snow cover duration of lessthan 18 %, 62 mm, 10 d, and 15 d, respectively. Average ranges in snowmeltrate were typically less than 4 mm d−1 and exhibited a smallrelationship to seasonal climate. Overall, sites with a greater proportionof precipitation falling at air temperatures between 0 and4 ∘C exhibited the greatest sensitivity to method selection,suggesting that the identification and use of an optimal precipitation phasemethod is most important at the warmer fringes of the seasonal snow zone.  more » « less
Award ID(s):
1637686
NSF-PAR ID:
10126821
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
23
Issue:
9
ISSN:
1607-7938
Page Range / eLocation ID:
3765 to 3786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks.

     
    more » « less
  2. Abstract

    Vertical displacements (dz) in permanent Global Positioning System (GPS) station positions enable estimation of water storage changes (ΔS), which historically have been impossible to measure directly. We use dz from 924 GPS stations in the western United States to estimate daily ΔS in California's Sierra Nevada and compare it to seasonal snow accumulation and melt over water years 2008–2017. Seasonal variations in GPS‐based ΔS are ~1,000 mm. Typically, only ~30% of ΔS is attributable to snow water equivalent (SWE). ΔS lags the snow cycle, peaking after maximum SWE and remaining positive when all snow has melted (SWE = 0). We conclude that seasonal ΔS fluctuations are not primarily driven by SWE but by rainfall and snowmelt stored in the shallow subsurface (as soil moisture and/or groundwater) and released predominantly through evapotranspiration. Seasonal peak GPS ΔS is larger than accumulated precipitation from the Parameter‐elevation Relationships on Independent Slopes Model and North American Land Data Assimilation System, indicating that these standard inputs underestimate mountain precipitation.

     
    more » « less
  3. Abstract

    Analysis of measured evapotranspiration shows that subsurface plant‐accessible water storage (PAWS) can sustain evapotranspiration through multiyear dry periods. Measurements at 25 flux tower sites in the semiarid western United States, distributed across five land cover types, show both resistance and vulnerability to multiyear dry periods. Average (±standard deviation) evapotranspiration ranged from 660 ± 230 mm yr−1(October–September) in evergreen needleleaf forests to 310 ± 200 mm yr−1in grasslands and shrublands. More than 52% of the annual evapotranspiration in Mediterranean climates is supported on average by seasonal drawdown of subsurface PAWS, versus 29% in monsoon‐influenced climates. Snowmelt replenishes dry‐season PAWS by as much as 20% at sites with significant seasonal snow accumulation but was insignificant at most sites. Evapotranspiration exceeded precipitation in more than half of the observation years at sites below 35°N. Annual evapotranspiration at non‐energy‐limited sites increased with precipitation, reaching a mean wet‐year evapotranspiration of 833 mm for evergreen needleleaf forests, 861 mm for mixed forests, 558 mm for woody savannas, 367 mm for grasslands, and 254 mm for shrublands. Thirteen sites experienced at least one multiyear dry period, when mean precipitation was more than one standard deviation below the historical mean. All vegetation types except evergreen needleleaf forests responded to multiyear dry periods by lowering evapotranspiration and/or significant year‐over‐year depletion of subsurface PAWS. Sites maintained wet‐year evapotranspiration rates for 8–33 months before attenuation, with a corresponding net PAWS drawdown of as much as 334 mm. Net drawdown at many sites continued until the dry period ended, resulting in an overall cumulative withdrawal of as much as 558 mm. Evergreen needleleaf forests maintained high evapotranspiration during multiyear dry periods with no apparent PAWS drawdown; these forests currently avoid drought but may prove vulnerable to longer and warmer dry periods that reduce snowpack storage and accelerate evapotranspiration.

     
    more » « less
  4. Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change and where it is most sensitive remain key questions. Physically based hydrological models are often used for this purpose; however, they have embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land surface simulations across the mountainous western USA. We develop an observational technique for detecting streamflow responses to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20) across 31 western USA watersheds affected by snow, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2=0.85), suggesting that a 1 d earlier DOS20 corresponds with a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on average 11±4 d earlier per 1 ∘C of warming. However, DOS20 in colder watersheds (mean November–February air temperature, TNDJF<-8 ∘C) is on average 70 % more sensitive to climate change than in warmer watersheds (TNDJF>0 ∘C). Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain model parameters, improve hydrological predictions, and inform process understanding. 
    more » « less
  5. null (Ed.)
    Abstract When compared with differences in snow accumulation predicted by widely used hydrological models, there is a much greater divergence among otherwise “good” models in their simulation of the snow ablation process. Here, we explore differences in the performance of the Variable Infiltration Capacity model (VIC), Noah land surface model with multiparameterization options (Noah-MP), the Catchment model, and the third-generation Simplified Simple Biosphere model (SiB3) in their ability to reproduce observed snow water equivalent (SWE) during the ablation season at 10 Snowpack Telemetry (SNOTEL) stations over 1992–2012. During the ablation period, net radiation generally has stronger correlations with observed melt rates than does air temperature. Average ablation rates tend to be higher (in both model predictions and observations) at stations with a large accumulation of SWE. The differences in the dates of last snow between models and observations range from several days to approximately a month (on average 5.1 days earlier than in observations). If the surface cover in the models is changed from observed vegetation to bare soil in all of the models, only the melt rate of the VIC model increases. The differences in responses of models to canopy removal are directly related to snowpack energy inputs, which are further affected by different algorithms for surface albedo and energy allocation across the models. We also find that the melt rates become higher in VIC and lower in Noah-MP if the shrub/grass present at the observation sites is switched to trees. 
    more » « less